首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We prove the uniqueness of positive ground state solutions of the problem \({ {\frac {d^{2}u}{dr^{2}}} + {\frac {n-1}{r}}{\frac {du}{dr}} + u \ln(|u|) = 0}\), \({u(r) > 0~\forall r \ge 0}\), and \({(u(r),u'(r)) \to (0, 0)}\) as \({r \to \infty}\). This equation is derived from the logarithmic Schrödinger equation \({{\rm i}\psi_{t} = {\Delta} \psi + u \ln \left(|u|^{2}\right)}\), and also from the classical equation \({{\frac {\partial u}{\partial t}} = {\Delta} u +u \left(|u|^{p-1}\right) -u}\). For each \({n \ge 1}\), a positive ground state solution is \({ u_{0}(r) = \exp \left(-{\frac{r^2}{4}} + {\frac{n}{2}}\right),~0 \le r < \infty}\). We combine \({u_{0}(r)}\) with energy estimates and associated Ricatti equation estimates to prove that, for each \({n \in \left[1, 9 \right]}\), \({u_{0}(r)}\) is the only positive ground state. We also investigate the stability of \({u_{0}(r)}\). Several open problems are stated.  相似文献   

2.
We develop a local discontinuous Galerkin finite element method for the distributed-order time and Riesz space-fractional convection–diffusion and Schrödinger-type equations. The stability of the presented schemes is proved and optimal order of convergence \(\mathcal {O}(h^{N+1}+(\Delta t)^{1+\frac{\theta }{2}}+\theta ^{2})\) for the Riesz space-fractional diffusion and Schrödinger-type equations with distributed order in time, an order of convergence of \(\mathcal {O}(h^{N+\frac{1}{2}}+(\Delta t)^{1+\frac{\theta }{2}}\) \(+\theta ^{2})\) is provided for the Riesz space-fractional convection–diffusion equations with distributed order in time where h, \(\theta \) and \(\Delta t\) are space step size, the distributed-order variables and the step sizes in time, respectively. Finally, the performed numerical examples confirm the optimal convergence order and illustrate the effectiveness of the method.  相似文献   

3.
We consider a family of linearly viscoelastic shells with thickness \(2\varepsilon\), clamped along their entire lateral face, all having the same middle surface \(S=\boldsymbol{\theta}(\bar{\omega})\subset \mathbb{R}^{3}\), where \(\omega\subset\mathbb{R}^{2}\) is a bounded and connected open set with a Lipschitz-continuous boundary \(\gamma\). We make an essential geometrical assumption on the middle surface \(S\), which is satisfied if \(\gamma\) and \(\boldsymbol{\theta}\) are smooth enough and \(S\) is uniformly elliptic. We show that, if the applied body force density is \(O(1)\) with respect to \(\varepsilon\) and surface tractions density is \(O(\varepsilon)\), the solution of the scaled variational problem in curvilinear coordinates, \(\boldsymbol{u}( \varepsilon)\), defined over the fixed domain \(\varOmega=\omega\times (-1,1)\) for each \(t\in[0,T]\), converges to a limit \(\boldsymbol{u}\) with \(u_{\alpha}(\varepsilon)\rightarrow u_{\alpha}\) in \(W^{1,2}(0,T,H ^{1}(\varOmega))\) and \(u_{3}(\varepsilon)\rightarrow u_{3}\) in \(W^{1,2}(0,T,L^{2}(\varOmega))\) as \(\varepsilon\to0\). Moreover, we prove that this limit is independent of the transverse variable. Furthermore, the average \(\bar{\boldsymbol{u}}= \frac{1}{2}\int_{-1}^{1} \boldsymbol{u}dx_{3}\), which belongs to the space \(W^{1,2}(0,T, V_{M}( \omega))\), where
$$V_{M}(\omega)=H^{1}_{0}(\omega)\times H^{1}_{0}(\omega)\times L ^{2}(\omega), $$
satisfies what we have identified as (scaled) two-dimensional equations of a viscoelastic membrane elliptic shell, which includes a long-term memory that takes into account previous deformations. We finally provide convergence results which justify those equations.
  相似文献   

4.
We study the long time behavior of the solutions to the 2D stochastic quasi-geostrophic equation on \({\mathbb {T}}^2\) driven by additive noise and real linear multiplicative noise in the subcritical case (i.e. \(\alpha >\frac{1}{2}\)) by proving the existence of a random attractor. The key point for the proof is the exponential decay of the \(L^p\)-norm and a boot-strapping argument. The upper semicontinuity of random attractors is also established. Moreover, if the viscosity constant is large enough, the system has a trivial random attractor.  相似文献   

5.
The significant reduction in heavy oil viscosity when mixed with \(\hbox {CO}_{2}\) is well documented. However, for \(\hbox {CO}_{2}\) injection to be an efficient method for improving heavy oil recovery, other mechanisms are required to improve the mobility ratio between the \(\hbox {CO}_{2}\) front and the resident heavy oil. In situ generation of \(\hbox {CO}_{2}\)-foam can improve \(\hbox {CO}_{2}\) injection performance by (a) increasing the effective viscosity of \(\hbox {CO}_{2}\) in the reservoir and (b) increasing the contact area between the heavy oil and injected \(\hbox {CO}_{2}\) and hence improving \(\hbox {CO}_{2}\) dissolution rate. However, in situ generation of stable \(\hbox {CO}_{2}\)-foam capable of travelling from the injection well to the production well is hard to achieve. We have previously published the results of a series of foam stability experiments using alkali and in the presence of heavy crude oil (Farzaneh and Sohrabi 2015). The results showed that stability of \(\hbox {CO}_{2}\)-foam decreased by addition of NaOH, while it increased by addition of \(\hbox {Na}_{2}\hbox {CO}_{3}\). However, the highest increase in \(\hbox {CO}_{2}\)-foam stability was achieved by adding borate to the surfactant solution. Borate is a mild alkaline with an excellent pH buffering ability. The previous study was performed in a foam column in the absence of a porous medium. In this paper, we present the results of a new series of experiments carried out in a high-pressure glass micromodel to visually investigate the performance of borate–surfactant \(\hbox {CO}_{2}\)-foam injection in an extra-heavy crude oil in a transparent porous medium. In the first part of the paper, the pore-scale interactions of \(\hbox {CO}_{2}\)-foam and extra-heavy oil and the mechanisms of oil displacement and hence oil recovery are presented through image analysis of micromodel images. The results show that very high oil recovery was achieved by co-injection of the borate–surfactant solution with \(\hbox {CO}_{2}\), due to in-situ formation of stable foam. Dissolution of \(\hbox {CO}_{2}\) in heavy oil resulted in significant reduction in its viscosity. \(\hbox {CO}_{2}\)-foam significantly increased the contact area between the oil and \(\hbox {CO}_{2}\) significantly and thus the efficiency of the process. The synergy effect between the borate and surfactant resulted in (1) alteration of the wettability of the porous medium towards water wet and (2) significant reduction of the oil–water IFT. As a result, a bank of oil-in-water (O/W) emulsion was formed in the porous medium and moved ahead of the \(\hbox {CO}_{2}\)-foam front. The in-situ generated O/W emulsion has a much lower viscosity than the original oil and plays a major role in the observed additional oil recovery in the range of performed experiments. Borate also made \(\hbox {CO}_{2}\)-foam more stable by changing the system to non-spreading oil and reducing coalescence of the foam bubbles. The results of these visual experiments suggest that borate can be a useful additive for improving heavy oil recovery in the range of the performed tests, by increasing \(\hbox {CO}_{2}\)-foam stability and producing O/W emulsions.  相似文献   

6.
This study investigated the dynamic displacement and dissolution of \(\hbox {CO}_{2}\) in porous media at 313 K and 6/8 MPa. Gaseous (\(\hbox {gCO}_{2}\)) at 6 MPa and supercritical \(\hbox {CO}_{2 }(\hbox {scCO}_{2}) \) at 8 MPa were injected downward into a glass bead pack at different flow rates, following upwards brine injection. The processes occurring during \(\hbox {CO}_{2}\) drainage and brine imbibition were visualized using magnetic resonance imaging. The drainage flow fronts were strongly influenced by the flow rates, resulting in different gas distributions. However, brine imbibition proceeded as a vertical compacted front due to the strong effect of gravity. Additionally, the effects of flow rate on distribution and saturation were analyzed. Then, the front movement of \(\hbox {CO}_{2}\) dissolution was visualized along different paths after imbibition. The determined \(\hbox {CO}_{2}\) concentrations implied that little \(\hbox {scCO}_{2}\) dissolved in brine after imbibition. The dissolution rate was from \(10^{-8}\) to \(10^{-9}\, \hbox {kg}\, \hbox {m}^{-3} \, \hbox {s}^{-1}\) and from \(10^{-6}\) to \(10^{-8}\, \hbox {kg}\, \hbox {m}^{-3} \, \hbox {s}^{-1}\) for \(\hbox {gCO}_{2}\) at 6 MPa and \(\hbox {scCO}_{2 }\) at 8 MPa, respectively. The total time for the \(\hbox {scCO}_{2}\) dissolution was short, indicating fast mass transfer between the \(\hbox {CO}_{2}\) and brine. Injection of \(\hbox {CO}_{2}\) under supercritical conditions resulted in a quick establishment of a steady state with high storage safety.  相似文献   

7.
In laminar flow, viscous fluids must exert appropriate elastic shear stresses normal to the flow direction. This is a direct consequence of the balance of angular momentum. There is a limit, however, to the maximum elastic shear stress that a fluid can exert. This is the ultimate shear stress, \(\tau _\mathrm{y}\), of the fluid. If this limit is exceeded, laminar flow becomes dynamically incompatible. The ultimate shear stress of a fluid can be determined from experiments on plane Couette flow. For water at \(20\,^{\circ }\hbox {C}\), the data available in the literature indicate a value of \(\tau _\mathrm{y}\) of about \(14.4\times 10^{-3}\, \hbox {Pa}\). This study applies this value to determine the Reynolds numbers at which flowing water reaches its ultimate shear stress in the case of Taylor–Couette flow and circular pipe flow. The Reynolds numbers thus obtained turn out to be reasonably close to those corresponding to the onset of turbulence in the considered flows. This suggests a connection between the limit to laminar flow, on the one hand, and the occurrence of turbulence, on the other.  相似文献   

8.
Following the magnetohydrodynamic (MHD) code validation and verification proposal by Smolentsev et al. (Fusion Eng Des 100:65–72, 2015), we perform code to code and code to experiment comparisons between two computational solvers, FLUIDYN and HIMAG, which are presently considered as two of the prospective CFD tools for fusion blanket applications. In such applications, an electrically conducting breeder/coolant circulates in the blanket ducts in the presence of a strong plasma-confining magnetic field at high Hartmann numbers, \(\textit{Ha}\) (\(\textit{Ha}^2\) is the ratio between electromagnetic and viscous forces) and high interaction parameters, \(\textit{N}\) (\(\textit{N}\) is the ratio of electromagnetic to inertial forces). The main objective of this paper is to provide the scientific and engineering community with common references to assist fusion researchers in the selection of adequate computational means to be used for blanket design and analysis. As an initial validation case, the two codes are applied to the classic problem of a laminar fully developed MHD flows in a rectangular duct. Both codes demonstrate a very good agreement with the analytical solution for \(\textit{Ha}\) up to 15, 000. To address the capabilities of the two codes to properly resolve complex geometry flows, we consider a case of three-dimensional developing MHD flow in a geometry comprising of a series of interconnected electrically conducting rectangular ducts. The computed electric potential distributions for two flows (Case A) \(\textit{Ha}=515\), \(\textit{N}=3.2\) and (Case B) \(\textit{Ha}=2059\), \(\textit{N}=63.8\) are in very good agreement with the experimental data, while the comparisons for the MHD pressure drop are still unsatisfactory. To better interpret the observed differences, the obtained numerical data are analyzed against earlier theoretical and experimental studies for flows that involve changes in the relative orientation between the flow and the magnetic field.  相似文献   

9.
This study presents experimental results from a flooding test series performed at reservoir conditions for five high-porosity Cretaceous onshore chalks from Denmark, Belgium and the USA, analogous to North Sea reservoir chalk. The chalks are studied in regard to their chemo-mechanical behaviour when performing tri-axial compaction tests while injecting brines (0.219 mol/L \(\hbox {MgCl}_{2}\) or 0.657 mol/L NaCl) at reservoir conditions for 2–3 months (T = 130 \(^\circ \hbox {C}\); 1 PV/d). Each chalk type was examined in terms of its mineralogical and chemical composition before and after the mechanical flooding tests, using an extensive set of analysis methods, to evaluate the chalk- and brine-dependent chemical alterations. All \(\hbox {MgCl}_{2}\)-flooded cores showed precipitation of Mg-bearing minerals (mainly magnesite). The distribution of newly formed Mg-bearing minerals appears to be chalk-dependent with varying peaks of enrichment. The chalk samples from Aalborg originally contained abundant opal-CT, which was dissolved with both NaCl and \(\hbox {MgCl}_{2}\) and partly re-precipitated as Si-Mg-bearing minerals. The Aalborg core injected with \(\hbox {MgCl}_{2}\) indicated strongly increased specific surface area (from 4.9 \(\hbox {m}^{2}\hbox {/g}\) to within 7–9 \(\hbox {m}^{2}\hbox {/g}\)). Mineral precipitation effects were negligible in chalk samples flooded with NaCl compared to \(\hbox {MgCl}_{2}\). Silicates were the main mineralogical impurity in the studied chalk samples (0.3–6 wt%). The cores with higher \(\hbox {SiO}_{2}\) content showed less deformation when injecting NaCl brine, but more compaction when injecting \(\hbox {MgCl}_{2}\)-brine. The observations were successfully interpreted by mathematical geochemical modelling which suggests that the re-precipitation of Si-bearing minerals leads to enhanced calcite dissolution and mass loss (as seen experimentally) explaining the high compaction seen in \(\hbox {MgCl}_{2}\)-flooded Aalborg chalk. Our work demonstrates that the original mineralogy, together with the newly formed minerals, can control the chemo-mechanical interactions during flooding and should be taken into account when predicting reservoir behaviour from laboratory studies. This study improves the understanding of complex flow reaction mechanisms also relevant for field-scale dynamics seen during brine injection.  相似文献   

10.
In millisecond-delay blasting and deep water blasting projects, traditional emulsion explosives sensitized by the chemical sensitizer \(\hbox {NaNO}_{2}\) often encounter incomplete explosion or misfire problems because of the “pressure desensitization” phenomenon, which seriously affects blasting safety and construction progress. A \(\hbox {MgH}_{2}\)-sensitized emulsion explosive was invented to solve these problems. Experimental results show that \(\hbox {MgH}_{2}\) can effectively reduce the problem of pressure desensitization. In this paper, the factors which influence the pressure desensitization of two types of emulsion explosives are studied, and resistance to this phenomenon of \(\hbox {MgH}_{2}\)-sensitized emulsion explosives is discussed.  相似文献   

11.
In this paper, we consider the perturbed KdV equation with Fourier multiplier
$$\begin{aligned} u_{t} =- u_{xxx} + \big (M_{\xi }u+u^3 \big )_{x},\quad u(t,x+2\pi )=u(t,x),\quad \int _0^{2\pi }u(t,x)dx=0, \end{aligned}$$
with analytic data of size \(\varepsilon \). We prove that the equation admits a Whitney smooth family of small amplitude, real analytic quasi-periodic solutions with \(\tilde{J}\) Diophantine frequencies, where the order of \(\tilde{J}\) is \(O(\frac{1}{\varepsilon })\). The proof is based on a conserved quantity \(\int _0^{2\pi } u^2 dx\), Töplitz–Lipschitz property and an abstract infinite dimensional KAM theorem. By taking advantage of the conserved quantity \(\int _0^{2\pi } u^2 dx\) and Töplitz–Lipschitz property, our normal form part is independent of angle variables in spite of the unbounded perturbation.
  相似文献   

12.
When \(\hbox {CO}_{2}\) is injected in a brine reservoir, brine or \(\hbox {CO}_{2}\) can be discharged into a permeable formation saturated with brine above the storage reservoir along a leakage pathway, if present. In most situations, the overlying formation can act as a single-phase aquifer with only brine leakage before \(\hbox {CO}_{2}\) leaks. This study examines the applicability of a developed inverse code for single-phase fluids to detect leakage pathway locations in view of the overlying formation using pressure anomalies induced by leaks. Before applying inverse analysis, forward modeling is performed using the TOUGH2 model to determine brine and \(\hbox {CO}_{2}\) leakage in a homogeneous conceptual model, and the simulated pressure profiles at monitoring wells are used as measurements in the inverse model. In the inverse code, an important consideration is that the vertical hydraulic conductivity and cross-sectional area of a leakage pathway that are inherent to a leakage term in the mass balance equation are integrated as a single parameter to estimate the leakage pathway locations. This method eliminates the impact of the uncertainty of the leakage pathway size on the accuracy of leakage pathway estimation. The inverse model examines the effect of the number of monitoring wells, monitoring periods and \(\hbox {CO}_{2}\) leakage into the overlying formation on the accuracy of leakage pathway estimation according to eleven application examples. The comparison between the results of the single-phase inverse code and iTOUGH2 code illustrates that the single-phase inverse model can be applicable to the leakage pathway estimation in a multiphase flow system.  相似文献   

13.
A large number (1253) of high-quality streaming potential coefficient (\(C_\mathrm{sp})\) measurements have been carried out on Berea, Boise, Fontainebleau, and Lochaline sandstones (the latter two including both detrital and authigenic overgrowth forms), as a function of pore fluid salinity (\(C_\mathrm{f})\) and rock microstructure. All samples were saturated with fully equilibrated aqueous solutions of NaCl (10\(^{-5}\) and 4.5 mol/dm\(^{3})\) upon which accurate measurements of their electrical conductivity and pH were taken. These \(C_\mathrm{sp}\) measurements represent about a fivefold increase in streaming potential data available in the literature, are consistent with the pre-existing 266 measurements, and have lower experimental uncertainties. The \(C_\mathrm{sp}\) measurements follow a pH-sensitive power law behaviour with respect to \(C_\mathrm{f}\) at medium salinities (\(C_\mathrm{sp} =-\,1.44\times 10^{-9} C_\mathrm{f}^{-\,1.127} \), units: V/Pa and mol/dm\(^{3})\) and show the effect of rock microstructure on the low salinity \(C_\mathrm{sp}\) clearly, producing a smaller decrease in \(C_\mathrm{sp}\) per decade reduction in \(C_\mathrm{f}\) for samples with (i) lower porosity, (ii) larger cementation exponents, (iii) smaller grain sizes (and hence pore and pore throat sizes), and (iv) larger surface conduction. The \(C_\mathrm{sp}\) measurements include 313 made at \(C_\mathrm{f} > 1\) mol/dm\(^{3}\), which confirm the limiting high salinity \(C_\mathrm{sp}\) behaviour noted by Vinogradov et al., which has been ascribed to the attainment of maximum charge density in the electrical double layer occurring when the Debye length approximates to the size of the hydrated metal ion. The zeta potential (\(\zeta \)) was calculated from each \(C_\mathrm{sp}\) measurement. It was found that \(\zeta \) is highly sensitive to pH but not sensitive to rock microstructure. It exhibits a pH-dependent logarithmic behaviour with respect to \(C_\mathrm{f}\) at low to medium salinities (\(\zeta =0.01133 \log _{10} \left( {C_\mathrm{f} } \right) +0.003505\), units: V and mol/dm\(^{3})\) and a limiting zeta potential (zeta potential offset) at high salinities of \({\zeta }_\mathrm{o} = -\,17.36\pm 5.11\) mV in the pH range 6–8, which is also pH dependent. The sensitivity of both \(C_\mathrm{sp}\) and \(\zeta \) to pH and of \(C_\mathrm{sp}\) to rock microstructure indicates that \(C_\mathrm{sp}\) and \(\zeta \) measurements can only be interpreted together with accurate and equilibrated measurements of pore fluid conductivity and pH and supporting microstructural and surface conduction measurements for each sample.  相似文献   

14.
We consider a Riemann problem for the shallow water system \(u_{t} +\big (v+\textstyle \frac{1}{2}u^{2}\big )_{x}=0\), \(v_{t}+\big (u+uv\big )_{x}=0\) and evaluate all singular solutions of the form \(u(x,t)=l(t)+b(t)H\big (x-\gamma (t)\big )+a(t)\delta \big (x-\gamma (t)\big )\), \(v(x,t)=k(t)+c(t)H\big (x-\gamma (t)\big )\), where \(l,b,a,k,c,\gamma :\mathbb {R}\rightarrow \mathbb {R}\) are \(C^{1}\)-functions of time t, H is the Heaviside function, and \(\delta \) stands for the Dirac measure with support at the origin. A product of distributions, not constructed by approximation processes, is used to define a solution concept, that is a consistent extension of the classical solution concept. Results showing the advantage of this framework are briefly presented in the introduction.  相似文献   

15.
We study the asymptotic behavior of the motion of an ideal incompressible fluid in a perforated domain. The porous medium is composed of inclusions of size \({\varepsilon}\) separated by distances \({d_{\varepsilon}}\) and the fluid fills the exterior. If the inclusions are distributed on the unit square, the asymptotic behavior depends on the limit of \({\frac{d_{\varepsilon}}\varepsilon}\) when \({\varepsilon}\) goes to zero. If \({\frac{d_{\varepsilon}}\varepsilon \to \infty}\), then the limit motion is not perturbed by the porous medium, namely, we recover the Euler solution in the whole space. If, on the contrary, \({\frac{d_{\varepsilon}}\varepsilon \to 0}\), then the fluid cannot penetrate the porous region, namely, the limit velocity verifies the Euler equations in the exterior of an impermeable square. If the inclusions are distributed on the unit segment then the behavior depends on the geometry of the inclusion: it is determined by the limit of \({\frac{d_{\varepsilon}}{\varepsilon^{2+\frac1\gamma}}}\) where \({\gamma \in (0,\infty]}\) is related to the geometry of the lateral boundaries of the obstacles. If \({\frac{d_{\varepsilon}}{\varepsilon^{2+\frac1\gamma}} \to \infty}\), then the presence of holes is not felt at the limit, whereas an impermeable wall appears if this limit is zero. Therefore, for a distribution in one direction, the critical distance depends on the shape of the inclusions; in particular, it is equal to \({\varepsilon^{3}}\) for balls.  相似文献   

16.
Hong  Qinghui  Xie  Qingguo  Xiao  Peng 《Nonlinear dynamics》2017,90(2):1015-1033
Attention is focused in this work on quasiperiodic motion of nonlinear systems whose spectrum contains uniformly spaced sideband frequencies with a distance \(\omega _{d}\) apart, around a frequency \(\omega \) with \(\omega \gg \omega _{d}\) and its integer multiples, which are referred to as carrier frequencies. The ratio of the two frequencies \(\omega \) and \(\omega _{d}\) is an irrational number. A new method based on the traditional incremental harmonic balance (IHB) method with multiple timescales, referred to as Lau method, where two timescales, \(\tau _{1}=\omega t\) (a fast timescale) and \(\tau _{2}=\omega _{d}t\) (a slow timescale), are introduced, is presented to analyze quasiperiodic motion of nonlinear systems. An amplitude increment algorithm is adapted to deal with cases where the two frequencies \(\omega \) and \(\omega _{d}\) are    unknown a priori, in order to automatically trace frequency response of quasiperiodic motion of nonlinear systems and accurately calculate all frequency components and their corresponding amplitudes. Results of application of the present IHB method to quasiperiodic free vibration of a hinged–clamped beam with internal resonance between two transverse modes are shown and compared with previously published results with Lau method and those from numerical integration. While differences are noted between results predicted by the present IHB method and Lau method, excellent agreement is achieved between results from the present IHB method and numerical integration even in cases of strongly nonlinear vibration. The present IHB method is also used to analyze quasiperiodic free vibration of high-dimensional models of the hinged–clamped beam.  相似文献   

17.
A three-dimensional compressible Direct Numerical Simulation (DNS) analysis has been carried out for head-on quenching of a statistically planar stoichiometric methane-air flame by an isothermal inert wall. A multi-step chemical mechanism for methane-air combustion is used for the purpose of detailed chemistry DNS. For head-on quenching of stoichiometric methane-air flames, the mass fractions of major reactant species such as methane and oxygen tend to vanish at the wall during flame quenching. The absence of \(\text {OH}\) at the wall gives rise to accumulation of carbon monoxide during flame quenching because \(\text {CO}\) cannot be oxidised anymore. Furthermore, it has been found that low-temperature reactions give rise to accumulation of \(\text {HO}_{2}\) and \(\mathrm {H}_{2}\mathrm {O}_{2}\) at the wall during flame quenching. Moreover, these low temperature reactions are responsible for non-zero heat release rate at the wall during flame-wall interaction. In order to perform an in-depth comparison between simple and detailed chemistry DNS results, a corresponding simulation has been carried out for the same turbulence parameters for a representative single-step Arrhenius type irreversible chemical mechanism. In the corresponding simple chemistry simulation, heat release rate vanishes once the flame reaches a threshold distance from the wall. The distributions of reaction progress variable c and non-dimensional temperature T are found to be identical to each other away from the wall for the simple chemistry simulation but this equality does not hold during head-on quenching. The inequality between c (defined based on \(\text {CH}_{4}\) mass fraction) and T holds both away from and close to the wall for the detailed chemistry simulation but it becomes particularly prominent in the near-wall region. The temporal evolutions of wall heat flux and wall Peclet number (i.e. normalised wall-normal distance of \(T = 0.9\) isosurface) for both simple and detailed chemistry laminar and turbulent cases have been found to be qualitatively similar. However, small differences have been observed in the numerical values of the maximum normalised wall heat flux magnitude \(\left ({\Phi }_{\max } \right )_{\mathrm {L}}\) and the minimum Peclet number \((Pe_{\min })_{\mathrm {L}}\) obtained from simple and detailed chemistry based laminar head-on quenching calculations. Detailed explanations have been provided for the observed differences in behaviours of \(\left ({\Phi }_{\max }\right )_{\mathrm {L}}\) and \((Pe_{\min })_{\mathrm {L}}\). The usual Flame Surface Density (FSD) and scalar dissipation rate (SDR) based reaction rate closures do not adequately predict the mean reaction rate of reaction progress variable in the near-wall region for both simple and detailed chemistry simulations. It has been found that recently proposed FSD and SDR based reaction rate closures based on a-priori DNS analysis of simple chemistry data perform satisfactorily also for the detailed chemistry case both away from and close to the wall without any adjustment to the model parameters.  相似文献   

18.
The Ogden model for an incompressible isotropic hyperelastic material is versatile enough to match complicated data for rubber-like materials at large deformations. However, the tensorial expression for the Cauchy stress in the Ogden model requires determination of the eigenvalues and eigenvectors of the left Cauchy-Green deformation tensor \(\mathbf{B}\). The objective of this paper is to propose an invariant-based Ogden-type model for isotropic incompressible hyperelastic materials. The strain energy function in this new model depends on classical invariants of \(\mathbf{B}\) and the Cauchy stress tensor can be expressed directly in terms of the tensor \(\mathbf{B}\) without need for its spectral form. Examples show that this new Ogden-type model retains the versatility of the original Ogden model in characterizing material response.  相似文献   

19.
20.
The present work aims at modeling the entire convection flux \(\overline {\rho \mathbf {u}W}\) in the transport equation for a mean reaction rate \(\overline {\rho W}\) in a turbulent flow, which (equation) was recently put forward by the present authors. In order to model the flux, several simple closure relations are developed by introducing flow velocity conditioned to reaction zone and interpolating this velocity between two limit expressions suggested for the leading and trailing edges of the mean flame brush. Subsequently, the proposed simple closure relations for \(\overline {\rho \mathbf {u}W}\) are assessed by processing two sets of data obtained in earlier 3D Direct Numerical Simulation (DNS) studies of adiabatic, statistically planar, turbulent, premixed, single-step-chemistry flames characterized by unity Lewis number. One dataset consists of three cases characterized by different density ratios and is associated with the flamelet regime of premixed turbulent combustion. Another dataset consists of four cases characterized by different low Damköhler and large Karlovitz numbers. Accordingly, this dataset is associated with the thin reaction zone regime of premixed turbulent combustion. Under conditions of the former DNS, difference in the entire, \(\overline {\rho {u}W}\), and mean, \(\tilde {u}\overline {\rho W}\), convection fluxes is well pronounced, with the turbulent flux, \(\overline {\rho u^{\prime \prime }W^{\prime \prime }}\), showing countergradient behavior in a large part of the mean flame brush. Accordingly, the gradient diffusion closure of the turbulent flux is not valid under such conditions, but some proposed simple closure relations allow us to predict the entire flux \(\overline {\rho \mathbf {u}W}\) reasonably well. Under conditions of the latter DNS, the difference in the entire and mean convection fluxes is less pronounced, with the aforementioned simple closure relations still resulting in sufficiently good agreement with the DNS data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号