首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Particle image velocimetry (piv) measurements are made at the trailing edge of a piezoelectric actuated aileron in order to investigate the physical effect on the flow via high-frequency low-amplitude actuation at high Reynolds numbers. The measurements at different actuation frequencies show the modification of the primary frequency components of the flow with the actuation frequency. A statistical analysis reveals the reduction of the Reynolds stress components which increases with the actuation frequency. Proper orthogonal decomposition (pod) analysis shows the modification of the spatial modes illustrating the vortex breakdown in the shear-layer and the reduction of the temporal mode spectral energy depending on the actuation. It has been shown that a specific low amplitude actuation frequency produces a significant reduction of the predominant shear-layer frequency.  相似文献   

2.
Large-eddy simulation (LES) was used to study the influence and the resulting flow mechanisms of active flow control applied to a two-dimensional vehicle geometry. The LES results were validated against existing Particle Image Velocimetry (PIV) and force measurement data. This was followed by an exploration of the influence of flow actuation on the near-wake flow and resulting aerodynamic forces. Not only was good agreement found with the previous experimental study, but new knowledge was gained in the form of a complex interaction of the actuation with the coherent flow structures. The resulting time-averaged flow shows a strong influence of the extension of the actuation slots and the lateral solid walls on the near-wake flow structures and thereby on the resulting drag.  相似文献   

3.
Tollmien?CSchlichting waves are one of the key mechanisms triggering the laminar-turbulent transition in a flat-plate boundary-layer flow. By damping these waves and thus delaying transition, skin friction drag can be significantly decreased. In this simulation study, a wall segment is actuated according to a control scheme based on a POD-Galerkin model driven extended Kalman filter for state estimation and a model predictive controller to dampen TS waves by negative superposition based on this information. The setup of the simulation is chosen to resemble actuation with a driven compliant wall, such as a membrane actuator. Most importantly, a method is proposed to integrate such a localized wall actuation into a Galerkin model.  相似文献   

4.
The introduction of spanwise velocity is a promising technique to effect the near-wall turbulent flow field to influence friction drag. However, the essential physical mechanism which significantly reduces friction drag has not been understood, yet. It is the objective of this numerical study to improve the fundamental knowledge on the drag reduction mechanism. The investigation is based on spanwise traveling transversal surface waves which are applied to modify the near-wall flow field and to influence friction drag. Two actuation configurations are analyzed in detail. Compared with an unactuated flat plate boundary layer simulation the first wave setup, which represents a low frequency wave at an amplitude larger than the viscous sublayer, leads to a reduced wall-shear stress resulting in friction drag reduction of up to 9%. The second wave setup, which possesses a higher frequency and an amplitude in the range of the viscous sublayer, yields an increase of friction drag of about 8%. Unlike previous investigations which focus on excitation setups to lower friction drag, the comparison of the two wave setups in this study allows to identify the effects which on the one hand, lead to drag reduction and on the other hand, result in drag increase. That is, due to the pronounced differences the major effects determining the friction distribution are more evident. The two key features for drag reduction are the damping of the wall-normal vorticity fluctuations above the entire surface and the decrease of turbulence production. Furthermore, the effect of rearranging streamwise vorticity, which has been stated to be responsible for drag reduction, is found to occur at increasing and decreasing drag, i.e., it is not the effect that lowers the friction drag.  相似文献   

5.
This paper highlights steady and unsteady measurements and flow control results obtained on an Ahmed model with slant angle of 25° in wind tunnel. On this high-drag configuration characterized by a large separation bubble along with energetic streamwise vortices, time-averaged and time-dependent results without control are first presented. The influence of rear-end periodic forcing on the drag coefficient is then investigated using electrically operated magnetic valves in an open-loop control scheme. Four distinct configurations of flow control have been tested: rectangular pulsed jets aligned with the spanwise direction or in winglets configuration on the roof end and rectangular jets or a large open slot at the top of the rear slant. For each configuration, the influence of the forcing parameters (non-dimensional frequency, injected momentum) on the drag coefficient has been studied, along with their impact on the static pressure on both the rear slant and vertical base of the model. Depending on the type and location of pulsed jets actuation, the maximum drag reduction is obtained for increasing injected momentum or well-defined optimal pulsation frequencies.  相似文献   

6.
A numerical simulation based on the Large eddy simulation method is carried out on the near wake flow behind a 25° slant angle Ahmed body to analyze and establish a new method to control the near wake flow. An active flow control using a new unsteady jet derived from the traditional synthetic jet is applied to reduce the aerodynamic drag. The control devices are distributed along the separation edges on the rear part of the body. Their effects on the near wake and the rear body by influencing the flow topology and the static pressure distribution are examined respectively. The control frequency of the jet as the key forcing parameter is taken into consideration as well. The different actuation set-ups lead to a max drag reduction of up to 13.6%, which demonstrates a good correlation with the static pressure distribution at the rear end of the body.  相似文献   

7.
Large-eddy simulations (LES) are employed to understand the flow field over a NACA 0015 airfoil controlled by a dielectric barrier discharge (DBD) plasma actuator. The Suzen body force model is utilised to introduce the effect of the DBD plasma actuator. The Reynolds number is fixed at 63,000. Transient processes arising due to non-dimensional excitation frequencies of one and six are discussed. The time required to establish flow authority is between four and six characteristic times, independent of the excitation frequency. If the separation is suppressed, the initial flow conditions do not affect the quasi-steady state, and the lift coefficient of the higher frequency case converges very quickly. The transient states can be categorised into following three stages: (1) the lift and drag decreasing stage, (2) the lift recovery stage, and (3) the lift and drag converging stage. The development of vortices and their influence on control is delineated. The simulations show that in the initial transient state, separation of flow suppression is closely related to the development spanwise vortices while during the later, quasi-steady state, three-dimensional vortices become more important.  相似文献   

8.
The pressure drag of blunt bluff bodies is highly relevant in many practical applications, including to the aerodynamic drag of road vehicles. This paper presents theory revealing that a mean drag reduction can be achieved by manipulating wake flow fluctuations. A linear feedback control strategy then exploits this idea, targeting attenuation of the spatially integrated base (back face) pressure fluctuations. Large-eddy simulations of the flow over a D-shaped blunt bluff body are used as a test-bed for this control strategy. The flow response to synthetic jet actuation is characterised using system identification, and controller design is via shaping of the frequency response to achieve fluctuation attenuation. The designed controller successfully attenuates integrated base pressure fluctuations, increasing the time-averaged pressure on the body base by 38%. The effect on the flow field is to push the roll-up of vortices further downstream and increase the extent of the recirculation bubble. This control approach uses only body-mounted sensing/actuation and input–output model identification, meaning that it could be applied experimentally.  相似文献   

9.
A model of a generic vehicle shape, the Ahmed body with a 25° slant, is equipped with an array of blowing steady microjets 6 mm downstream of the separation line between the roof and the slanted rear window. The goal of the present study is to evaluate the effectiveness of this actuation method in reducing the aerodynamic drag, by reducing or suppressing the 3D closed separation bubble located on the slanted surface. The efficiency of this control approach is quantified with the help of aerodynamic load measurements. The changes in the flow field when control is applied are examined using PIV and wall pressure measurements and skin friction visualisations. By activating the steady microjet array, the drag coefficient was reduced by 9–14% and the lift coefficient up to 42%, depending on the Reynolds number. The strong modification of the flow topology under progressive flow control is particularly studied.  相似文献   

10.
Flow control has shown a potential in reducing the drag in vehicle aerodynamics. The present numerical study deals with active flow control for a quasi-2D simplified vehicle model using a synthetic jet (zero net mass flux jet). Recently developed near-wall Partially-Averaged Navier–Stokes (PANS) method, based on the ζf RANS turbulence model, is used. The aim is to validate the performance of this new method for the complex flow control problem. Results are compared with previous studies using LES and experiments, including global flow parameters of Strouhal number, drag coefficients and velocity profiles. The PANS method predicts a drag reduction of approximately 15%, which is closer to the experimental data than the previous LES results. The velocity profiles predicted by the PANS method agree well with LES results and experimental data for both natural and controlled cases. The PANS prediction showed that the near-wake region is locked-on due to the synthetic jet, and the shear layer instabilities are thus depressed which resulted in an elongated wake region and reduced drag. It demonstrates that the PANS method is able to predict the flow control problem well and is thus appropriate for flow control studies.  相似文献   

11.
从曙光  冯敏  郑百林 《力学季刊》2015,36(3):464-473
建立两种接缝形式足球的几何模型,通过LES方法计算足球模型的升阻力及相应流场情况.计算结果与相关文献对比,分析了计算误差的来源,并提出可行的处理方案.计算得到模型表面的接缝使得边界层分离点前移,分离区增大,从而阻力增大.计算结果同时表明,两种接缝对阻力的影响是相当的,对升力影响却不可忽视.计算得到升力的变化情况,并从涡脱落角度分析其特征.在此基础上,对“超自然现象”的飘球的力学机理进行了探讨.  相似文献   

12.
This paper reports experimental results on using steady and unsteady plasma aerodynamic actuation to control the corner separation, which forms over the suction surface and end wall corner of a compressor cascade blade passage. Total pressure recovery coefficient distribution was adopted to evaluate the corner separation. Corner separation causes significant total pressure loss even when the angle of attack is 0°. Both steady and unsteady plasma aerodynamic actuations suppress the corner separation effectively. The control effect obtained by the electrode pair at 25% chord length is as effective as that obtained by all four electrode pairs. Increasing the applied voltage improves the control effect while it augments the power requirement. Increasing the Reynolds number or the angle of attack makes the corner separation more difficult to control. The unsteady actuation is much more effective and requires less power due to the coupling between the unsteady actuation and the separated flow. Duty cycle and excitation frequency are key parameters in unsteady plasma flow control. There are thresholds in both the duty cycle and the excitation frequency, above which the control effect saturates. The maximum relative reduction in total pressure loss coefficient achieved is up to 28% at 70% blade span. The obvious difference between steady and unsteady actuation may be that wall jet governs the flow control effect of steady actuation, while much more vortex induced by unsteady actuation is the reason for better control effect.  相似文献   

13.
The two-layer modeling approach has become one of the most promising and successful methodology for simulating turbulent boundary layers in the past ten years. In the present study, a mixed wall model for large-eddy simulations (LES) of high-speed flows is proposed which combine two approaches; the thin-Boundary Layer Equations (TBLE) model of Kawai and Larsson (1994) and the analytical wall-layer model of Duprat et al. (2011) for streamwise pressure gradients. The new hybrid model has been efficiently implemented into a three-dimensional compressible LES solver and validated against DNS of a spatially-evolving supersonic boundary layer (BL) under moderate and strong pressure gradients, before being employed for the prediction of nozzle flow separations at different flow conditions, ranging from weakly to highly over-expanded regimes. A good agreement is obtained in terms of mean and fluctuating quantities compared to the DNS results. Particularly, the current wall-modeled LES results are found to perfectly match the DNS data of supersonic BL with/out pressure gradient. It is also shown that the model can account for the effect of the large-scale turbulent motions of the outer layer, indicating a good interaction between the inner and the outer part of the wall layer. In terms of simulations costs and improvements of computing power, the obtained results highlight the capability of the current wall-modeling LES strategy in saving a considerable amount of computational time compared to the wall-resolved LES counterpart, allowing to push further the simulations limits. Furthermore, the application of these computationally low-costly LES simulations to nozzle flow separation allows to clearly identify the origin of the shock unsteadiness, and the existence of broadband and energetically-significant low-frequency oscillations (LFO) in the vicinity of the separation region.  相似文献   

14.
Large Eddy Simulation (LES) using a dynamic Smagorinsky type subgridstress (SGS) model and Detached Eddy Simulation (DES) are applied toprediction and investigation of the flow around a sphere at a Reynoldsnumber of 104 in the subcritical regime. In this regime the boundarylayers at separation are laminar, and transition to turbulence occursfarther downstream in the separated shear layers via Kelvin–Helmholtz(K–H) instabilities. The dynamic eddy viscosity model of Germano et al.(Physics of Fluids 3 (1991) 1760–1765) is used in the LES, while the current implementation of the DESemploys a formulation based on the Spalart–Allmaras (S–A) model. DES isa hybrid approach in which the closure is a modification to theproduction/destruction term of the original Reynolds-AveragedNavier–Stokes (RANS) model, reducing to RANS in the attached regions,and to LES away from the wall. In the present work where we simulate theflow over a sphere in the subcritical regime in which the boundarylayers at separation are laminar, DES can be viewed as LES with adifferent SGS model. Effects of the discretization scheme used toapproximate the convective terms are considered, along with sensitivityof predictions to changes in the additional model coefficient, C DES, in the DES formulation. DES and LES yield similar predictions of the wakestructure, large-scale vortex shedding and the Strouhal numberassociated with the low frequency mode in the wake. Predictions ofquantities such as the drag coefficient, wake frequencies, position oflaminar separation on the sphere, and the mean pressure andskin-friction distributions along the sphere are in good agreement withthe measurements of Achenbach (Journal of Fluid Mechanics 54 (1972) 565–575). Predictions of the primaryReynolds shear stress, turbulent kinetic energy, eddy viscosity, andturbulent dissipation for the two models are also similar. In addition,both models successfully resolve the formation of the vortex tubes inthe detached shear layers along with the value of the Strouhal numberassociated with the high frequency instability mode, provided that thelevel of numerical dissipation introduced by the discretization schemeremains sufficiently low. Flow physics investigations are focused onunderstanding the wake structure in the subcritical regime.  相似文献   

15.
This paper describes a comprehensive non-linear multiphysics model based on the Euler–Bernoulli beam equation that remains valid up to large displacements in the case of electrostatically actuated Mathieu resonators. This purely analytical model takes into account the fringing field effects and is used to track the periodic motions of the sensing parts in resonant microgyroscopes. Several parametric analyses are presented in order to investigate the effect of the proof mass frequency on the bifurcation topology. The model shows that the optimal sensitivity is reached for resonant microgyroscopes designed with sensing frequency four times faster than the actuation one.  相似文献   

16.
In this paper we present detailed Euler–Euler Large Eddy Simulations (LES) of dispersed bubbly flow in a rectangular bubble column. The motivation of this study is to investigate the potential of this approach for the prediction of bubbly flows, in terms of mean quantities. The physical models describing the momentum exchange between the phases including drag, lift and wall force were chosen according to previous experiences of the authors. Experimental data, Euler–Lagrange LES and unsteady Euler–Euler Reynolds-Averaged Navier–Stokes results are used for comparison. It is found that the present model combination provides good agreement with experimental data for the mean flow and liquid velocity fluctuations. The energy spectrum obtained from the resolved velocity of the Euler–Euler LES is presented as well.  相似文献   

17.
Controlled concentrations of trapped vorticity within an offset, subsonic (MAIP ≤ 0.7) diffuser are explored for active suppression of flow distortion in joint experimental and numerical investigations. The coupling between trapped vorticity, used to model boundary-layer separation, and secondary-flow vortices is manipulated using an array of fluidic oscillating jets, which are spanwise distributed just upstream of the trapped vortex. Actuation energizes the separated shear layer, reducing the size of separation and effecting an earlier reattachment of the boundary layer, which favorably effects the flow field downstream of reattachment. It is shown that optimal interactions between actuation and the trapped vortex fully suppress the central vortex pair, and redistributes the residual vorticity around the diffuser's circumference. This results in a 68% reduction in circumferential distortion at the Aerodynamic Interface Plane (AIP), using an actuation mass flow rate that is only 0.25% of the diffuser mass flow rate.  相似文献   

18.
In this study, a passive flow control experiment on a 3D bluff-body using vortex generators (VGs) is presented. The bluff-body is a modified Ahmed body (Ahmed in J Fluids Eng 105:429–434 1983) with a curved rear part, instead of a slanted one, so that the location of the flow separation is no longer forced by the geometry. The influence of a line of non-conventional trapezoïdal VGs on the aerodynamic forces (drag and lift) induced on the bluff-body is investigated. The high sensitivity to many geometric (angle between the trapezoïdal element and the wall, spanwise spacing between the VGs, longitudinal location on the curved surface) and physical (freestream velocity) parameters is clearly demonstrated. The maximum drag reduction is ?12%, while the maximum global lift reduction can reach more than ?60%, with a strong dependency on the freestream velocity. For some configurations, the lift on the rear axle of the model can be inverted (?104%). It is also shown that the VGs are still efficient even downstream of the natural separation line. Finally, a dynamic parameter is chosen and a new set-up with motorized vortex generators is proposed. Thanks to this active device. The optimal configurations depending on two parameters are found more easily, and a significant drag and lift reduction (up to ?14% drag reduction) can be reached for different freestream velocities. These results are then analyzed through wall pressure and velocity measurements in the near-wake of the bluff-body with and without control. It appears that the largest drag and lift reduction is clearly associated to a strong increase of the size of the recirculation bubble over the rear slant. Investigation of the velocity field in a cross-section downstream the model reveals that, in the same time, the intensity of the longitudinal trailing vortices is strongly reduced, suggesting that the drag reduction is due to the breakdown of the balance between the separation bubble and the longitudinal vortices. It demonstrates that for low aspect ratio 3D bluff-bodies, like road vehicles, the flow control strategy is much different from the one used on airfoils: an early separation of the boundary layer can lead to a significant drag reduction if the circulation of the trailing vortices is reduced.  相似文献   

19.
Adaptive shock control bumps can exploit the on-design drag-reducing potential of 2D bumps, while mitigating their off-design performance deterioration through geometric modifications. In this study, experiments and simulations have been employed to investigate the wave-drag reducing potential of (actuated and unconstrained) 2D adaptive shock control bumps over a wide range of shock positions. Experiments were carried out in the Imperial College supersonic wind tunnel, modelling the adaptive bump as a flexible surface placed beneath a Mach 1.4 shock wave. 2D RANS CFD simulations of the flow in a parallel channel with a solid bump complement experiments. Wave drag was demonstrated to be proportional to the ratio of inlet to exit stagnation pressure in a blow-down wind tunnel for a given shock position. The shock exhibits a hysteretic behaviour when travelling in the wind tunnel working section, governed by the wave drag reducing potential of the bump. The actuated adaptive bump tested reduces wave drag over a wider operational envelope than solid bumps as experiments revealed the presence of three preferred structural configurations, which lead to a significantly enlarged hysteresis region. Finally, tests on unconstrained bumps were shown to increase wave drag, both on- and off-design, due to the unfavourable bump shapes that result from (only) passive actuation, suggesting that some constraints are required to achieve desirable surface deformations.  相似文献   

20.
It is observed that the feather surface exhibits anisotropic resistances for the streamwise and spanwise flows. To obtain a qualitative understanding about the effect of this anisotropic resistance feature of surface on the boundary-layer transitional flow over a flat plate, a simple phenomenological model for the anisotropic resistance is established in this paper. By means of the large eddy simulation (LES) with high-order accurate finite difference method, the numerical investigations are conducted. The numerical results show that with the spanwise resistance hindering the formation of vortexes, the transition from laminar flow to turbulent flow can be delayed, and turbulence is weakened when the flow becomes fully turbulent, which leads to significant drag reduction for the plate. On the contrary, the streamwise resistance renders the flow less stable, which leads to the earlier transition and enhances turbulence in the turbulent region, causing a drag increase for the plate. Thus, it is indicated that a surface with large resistance for spanwise flow and small resistance for streamwise flow can achieve significant drag reduction. The present results highlight the anisotropic resistance characteristic near the feather surface for drag reduction, and shed a light on the study of bird’s efficient flight.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号