首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Large scale periodic structures can exist in selected flow fields. Examples are the Precessing Vortex Core in swirling flows, vortex shedding behind a cylinder or the wake of an annular jet. A number of techniques are available to extract these large scales from the turbulent fluctuations in the flow field. In this paper, an analysis is made of three such methods: Eulerian Time Filtering (ETF), Proper Orthogonal Decomposition (POD) and non-linear least-squares regression POD (NLSR-POD). The accuracy of the three different extraction methods is compared quantitatively with phase averaged data of an annular wake flow. This flow was chosen as a test case, since it is widely used in industrial applications, such as for example bluff-body burners. It was shown that all three methods were able to reconstruct the flow field with reasonable accuracy. These techniques are therefore applicable to a number of periodic flows. The big advantage of these extraction methods is that they require 20 times less experimental data compared to phase averaging. All three methods require more or less the same computational time and since the computational time is a few orders of magnitude lower than the measurement time, application of these techniques results in a very large reduction in the total time to obtain the flow field characteristics. This results in a significant reduction of time in the design process of such flows.  相似文献   

2.
The present paper discusses the Large Eddy Simulation of a confined non-reacting annular swirling jet. The configuration corresponds to a well investigated flow studied experimentally by Sheen (1993). The flow field is characterised by a high swirl number resulting in relatively complex features. The challenging behaviour of the flow is governed by the interaction of several recirculation zones. The central recirculation zone formed by the swirling jet is strongly affected by the cylindrical centre body which acts as a bluff body. The flow features coherent structures such as Precessing Vortex Cores (PVCs), which create regions with high velocity fluctuations. The simulations presented comprise a detailed investigation of the parameters controlling the inert flow and a thorough comparison with the experimental data.  相似文献   

3.
基于kω的SST两方程湍流模型,在时间域求解雷诺平均Navier-Stokes方程,模拟弯度翼型大迎角时的分离流动。通过给翼型施加一定形式的扰动,重点关注了翼型弯度对大迎角分离涡流场平衡态转移的影响。研究结果表明:与相同厚度20%以上的对称翼型相比,2%弯度的翼型出现分离涡流场平衡态转移的起始迎角变小2°左右,迎角区间变宽约1°;在厚度相对较小的NACA2416翼型上也发现上述分离涡平衡态转移现象。由此说明翼型弯度在一定程度上促使了分离涡平衡态的转移。  相似文献   

4.
The effect of axial forcing on the flame/vortex breakdown interaction is studied, with particular focus on the Precessing Vortex Core (PVC). Large Eddy Simulation (LES), together with a filtered flamelet model describing the subgrid combustion, is performed to study a lean premixed flame undergoing mass flow fluctuations in a wide range of frequencies and amplitude. In average, forcing at frequencies lower than the PVC characteristic frequency moves the recirculation zone upstream the combustor in the premixing tube, while higher frequencies do not relevantly affect the flow/flame. With the help of Proper Orthogonal Decomposition (POD) a detailed analysis of the dynamics of the central recirculation zone (CRZ) is performed showing how the excitation at lower frequencies weakens the PVC and allows the flame to propagate upstream. Extended POD is also applied to illustrate the flow/flame interactions during the excitation cycle.  相似文献   

5.
Sub- and supersonic flows past curvilinear surfaces with spherical recesses are investigated. The Coanda flow was created by a jet flowing out from a plane convergent nozzle into a submerged space along the tangent to a circular cylinder. The forces exerted on the cylinder and the total and static pressure profiles in Coanda jet cross-sections were measured. It is shown that the spherical recesses increase the friction drag at both sub- and supersonic velocities.  相似文献   

6.
壁湍流相干结构和减阻控制机理   总被引:2,自引:0,他引:2  
许春晓 《力学进展》2015,45(1):201504
剪切湍流中相干结构的发现是上世纪湍流研究的重大进展之一,这些大尺度的相干运动在湍流的动力学过程中起重要作用,也为湍流的控制指出了新的方向.壁湍流高摩擦阻力的产生与近壁区流动结构密切相关,基于近壁区湍流动力学过程的减阻控制方案可以有效降低湍流的摩擦阻力,但是随着雷诺数的升高, 这些控制方案的有效性逐渐降低.近年来研究发现, 在高雷诺数情况下外区存在大尺度的相干运动,这种大尺度运动对近壁区湍流和壁面摩擦阻力的产生有重要影响,为高雷诺数湍流减阻控制策略的设计提出了新的挑战.该文将对壁湍流相干结构的研究历史加以简单的回顾,重点介绍近壁区相干结构及其控制机理、近年来高雷诺数外区大尺度运动的研究进展,在此基础上提出高雷诺数减阻控制研究的关键科学问题.   相似文献   

7.
Experiments were conducted using tufts and PIV to determine the conditions for which a swirled gas jet issuing from a sharp-edge nozzle, in flush with a base plate, would form a Coanda jet. The flow field was also simulated. The inception of the Coanda jet was observed to be associated with the formation of a recirculation bubble at the nozzle exit. A threshold value of swirl number, which increased monotonically with Reynolds number, was required for the formation of the Coanda jet. The Coanda jet was associated with hysteresis. The flow features and transition from a diverging jet to a Coanda jet are discussed.  相似文献   

8.
In the spirit of Ha Minh's semi-deterministic model, we propose a new method for computing fully-developed turbulent flows, called Coherent Vortex Simulation (CVS). It is based on the observation that turbulent flows contain both an organized part, the coherent vortices, and a random part, the incoherent background flow. The separation into coherent and incoherent contributions is done using the wavelet coefficients of the vorticity field and the Biot–Savart kernel to reconstruct the coherent and incoherent velocity fields. The evolution of the coherent part is computed using a wavelet basis, adapted at each time step to resolve the regions of strong gradients, while the incoherent part is discarded during the flow evolution, which models turbulent dissipation. The CVS method is similar to LES, but it uses nonlinear multiscale band-pass filters, which depend on the instantaneous flow realization, while LES uses linear low-pass filters, which do not adapt to the flow evolution. As example, we apply the CVS method to compute a time developing two-dimensional mixing layer and a wavelet forced two-dimensional homogeneous isotropic flow. We also demonstrate how walls or obstacles can be taken into account using penalization and compute a two-dimensional flow past an array of cylinders. Finally, we perform the same segmentation into coherent and incoherent components in a three-dimensional homogeneous isotropic turbulent flow. We show that the coherent components correspond to vortex tubes, which exhibit non-Gaussian statistics and long-range correlation, with the same k −5/3power-law energy spectrum as the total flow. In contrast, the incoherent components correspond to an homogeneous random background flow which does not contain organized structures and presents an energy equipartition together with a Gaussian PDF of velocity. This justifies their elimination during the CVS computation to model turbulent dissipation. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

9.
This paper performs large eddy simulations (LES) to investigate coherent structures in the flows after the Sydney bluff-body burner, a circular bluff body with an orifice at its center. The simulations are validated by comparison to existing experimental data. The Q function method is used to visualize the instantaneous vortex structures. Three kinds of structures are found, a cylindrical shell structure in the outer shear layer, a ring structure and some hairpin-like structures in the inner shear layer. An eduction scheme is employed to investigate the coherent structures in this flow. Some large streaks constituted by counter-rotating vortices are found in the outer shear layer and some well-organized strong structures are found in the inner shear layer. Finally, the influences of coherent structures on scalar mixing are studied and it is shown that scalar in the recirculation region is transported outward by coherent structures.  相似文献   

10.
This paper investigates the flow pattern change in an annular jet caused by a sudden change in the level of inlet swirl. The jet geometry consists of an annular channel followed by a specially designed stepped‐conical nozzle, which allows the existence of four different flow patterns as a function of the inlet swirl number. This paper reports on the transition between two of them, called the ‘open jet flow high swirl’ and the ‘Coanda jet flow.’ It is shown that a small sudden decrease of 4% in inlet swirl results in a drastic and irreversible change in flow pattern. The objective of this paper is to reveal the underlying physical mechanisms in this transition by means of numerical simulations. The flow is simulated using the unsteady Reynolds‐averaged Navier–Stokes (URANS) approach for incompressible flow with a Reynolds stress turbulence model. The analysis of the numerical results is based on a study of different forces on a control volume, which consists of the jet boundaries. The analysis of these forces shows that the flow pattern change consists of three different regimes: an immediate response regime, a quasi‐static regime and a Coanda regime. The simulation reveals that the pressure–tangential velocity coupling during the quasi‐static regime and the Coanda effect at the nozzle outlet during the Coanda regime are the driving forces behind the flow pattern change. These physical mechanisms are validated with time‐resolved stereo‐PIV measurements, which confirm the numerical simulations. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
The vortex formed at the tip of a propeller interacting with the vortex formed at the tip of a stator vane provides a unique environment for the study of vortex interactions. Changes in the relative vortex strengths and vortex rotational directions were determined to impact the resulting vortex structures and are easily implemented with the experimental apparatus described herein. Study of the development of the vortex interaction was determined to be possible by increasing the initial separation between the two vortices. Vortex interaction phenomenon has been observed using smoke flow visualization.The authors would like to thank the NASA Lewis Research Center for their funding of propeller related research from which this experiment evolved and the National Sciences and Engineering Research Council of Canada for R. Johnston's Post Graduate Scholarships.  相似文献   

12.
An experimental and numerical study of the three-dimensional transition of plane wakes and shear layers behind a flat plate is presented. Flow visualization techniques are used to monitor the response of laminar flows at moderate Reynolds numbers (≈100) to perturbations periodically distributed along the span. In this way, the formation and evolution of streamwise vortex tubes and their interaction with the spanwise vortices are analyzed. The flow was studied numerically by means of three-dimensional inviscid vortex dynamics. Assuming periodicity in the spanwise and the streamwise direction, we discretize the vorticity field into two layers of vortex filaments with finite core diameter. Comparison between experiment and visualization indicates that important features of the three-dimensional evolution can be reproduced by inviscid vortex dynamics. Vortex stretching in the strain field of the spanwise rollers appears to be the primary mechanism for the three-dimensional transition in this type of flows.  相似文献   

13.
剪切湍流大尺度相干结构的模式研究   总被引:3,自引:0,他引:3  
发展了一种计算剪切湍流大尺度相干结构的新模式.该模式的基础是认为大尺度相干结构为湍流场中流体脉动能量增长最快的那部分,且包含大部分的湍流脉动能量.在此基础上。通过对湍流相干能量方程的推演。建立了描述大尺度相干结构的特征控制方程,并应用Chebyshev多项式方法求得湍流相干能量的最大增长率在波数空间的分布,从而获得对应的大尺度相干结构.应用该模式研究了槽流和一自然对流中的大尺度相干结构,得到的近壁区流动结构与实验现象十分接近.  相似文献   

14.
In a stepped channel operating with large flow rates, the flow skims over the pseudo-bottom formed by the step edges as a coherent stream. Intense three-dimensional recirculation is maintained by shear stress transmission from the mainstream to the step cavities, while significant free-surface aeration takes place. The interactions between free-surface aeration and cavity recirculation are investigated herein with seven step cavity configurations. The experiments were conducted in a large stepped channel operating at large Reynolds numbers. For some experiments, triangular vanes, or longitudinal ribs, were placed across the step cavities to manipulate the flow turbulence to enhance the interactions between the mainstream flow and the cavity recirculation region. The results showed a strong influence of the vanes on the air–water flow properties in both free-stream and cavity flows. The findings demonstrate some passive turbulence manipulation in highly turbulent air–water flows.  相似文献   

15.
The deviation of a jet from the straight direction due to the presence of a lateral wall is investigated from the experimental point of view. This flow condition is known as Coanda jet (from the Romanian aerodynamicist Henry Marie Coanda who discovered and applied it at the beginning of XXth century) or offset jet. The objective of the work is to detail the underlying mechanisms of such a phenomenon aiming to use it as a flow control method at polluted river flows mouth. To do this, a large laboratory free-surface tank with an incoming channel has been set up and velocity field measurements are performed by Optical Flow methods (namely Feature Tracking). Preliminary tests on the well-known free jet configuration without any marine structure (i.e. lateral wall) are performed to allow comparison with free jet scaling and self-similar solutions. The presence of the free-surface gives rise to centerline velocity decay which is lower than in free unbounded plane or circular jets due to the vertically limited ambient fluid entrainment. In the second part of the paper, the effect of a lateral wall on the jet configuration is examined by placing it at different lateral distances from the jet outlet. The resulting velocity fields clearly show an inclined Coanda jet with details which seems to depend on the lateral wall distance itself. The analysis of self-similarity along the inclined jet direction reveals that for wall distances larger than 5 jet widths this dependence almost disappears.  相似文献   

16.
石可 《力学进展》2007,37(2):289-307
本文讨论壁面湍流发展的相干结构的观点.在简要的历史文献综述后,我们回顾一些基本观点, 并且介绍相干结构的思想.基于大量主要是由实验所得的结果,本文通过广泛运用的事件检 测技术,探讨湍流边界层内部和外部区域发生的现象.我们从边界层内部区域发生的现象、 边界层外部大尺度运动的发展和涡结构动力学的角度来描述流动的现象.在文章的 第2部分,介绍从背景流动中推演出湍流相干结构的各种方法以及在各种方法框架下所得到的结果, 讨论速度梯度张量不变量、压力的Hessian矩阵分析和本征正交分解等方法.每一个过程 都有``相干结构'的特定的定义,满足恰当的数学构架,并可以对湍流数据做相干结构动力 学分析.这一工作可能会对当前流体动力学家在湍流研究中用到的最新理论和技术的传播有 所贡献.  相似文献   

17.
Multiphase flows are ubiquitous in our daily lifeand engineering applications.It is important to investigatethe flow structures to predict their dynamical behaviors effectively.Lagrangian coherent structures(LCS) defined bythe ridges of the finite-time Lyapunov exponent(FTLE) isutilized in this study to elucidate the multiphase interactionsin gaseous jets injected into water and time-dependent turbulent cavitation under the framework of Navier-Stokes flowcomputations.For the gaseous jets injected into water,the highlightedphenomena of the jet transportation can be observed by theLCS method,including expansion,bulge,necking/breaking,and back-attack.Besides,the observation of the LCS revealsthat the back-attack phenomenon arises from the fact that theinjected gas has difficulties to move toward downstream region after the necking/breaking.For the turbulent cavitatingflow,the ridge of the FTLE field can form a LCS to capturethe front and boundary of the re-entraint jet when the adverse pressure gradient is strong enough.It represents a barrier between particles trapped inside the circulation regionand those moving downstream.The results indicate that theFTLE field has the potential to identify the structures of multiphase flows,and the LCS can capture the interface/barrieror the vortex/circulation region.  相似文献   

18.
Nanoparticle-laden flows via moment method: A review   总被引:1,自引:0,他引:1  
The study of nanoparticle-laden multiphase flow has received much attention due to its occurrence in a wide range of industrial and natural phenomena. Many of these flows are multi-dimensional multi-species systems involving strong mass, momentum and energy transfer between carrying phase and dispersed particle phase. The purpose of the present paper is to survey some advances on our researches in this field over the last 5 years. The research includes the closure for particle general dynamic equation; the fundamental interaction between particle dynamics and flow coherent structures; theoretical analysis on nanoparticle collision rate; and the application of theoretical works in some specific problems.  相似文献   

19.
This work presents results of flow around a heated circular cylinder in mixed convection regime and demonstrates that Prandtl number and angle of attack of the incoming flow have a large influence on the characterisation of the flow transition from 2-D to 3-D. Previous studies show that heat transfer can enhance the formation of large 3-D structures in the wake of the cylinder for Reynolds numbers between 75 and 127 and a Richardson number larger than 0.35. This transitional mode is generally identified as “mode E”. In this work, we compare the results for water-based flow (large Prandtl number) with the ones for air-based flows (low Prandtl number). The comparison is carried out at two Reynolds numbers (100 and 150) and at a fixed Richardson number of 1. It shows that at the low Reynolds number of 100 the low Prandtl number flow does not enter into transition. This is caused by the impairment of the baroclinic vorticity production provoked by the spanwise temperature gradient. At low Prandtl number temperature gradients are less steep. For an air-based flow at Reynolds number 150, several Richardson numbers have been simulated. In this situation, the flow enters into transition and exhibits the characteristics of “mode E”, with the development of Λ-shaped structures in the near wake and mushroom-like structures in the far wake. It is also observed that the transition is delayed at Richardson number of 0.5. Simulations are also carried to investigate the effect of the angle of attack on the incoming flow on the development of large coherent structures. When the angle of attack is positive, the development of the wake tends to return to a more bi-dimensional configuration, where large scale coherent structures are impaired. In contrast, when the angle of attack is negative, large scale tri-dimensional structures dominate the flow in the wake, but with a very chaotic behaviour and the regular pattern of zero angle of attack is destroyed. The different behaviour of the flow with the variation of the angle of attack is also related to the baroclinic vorticity production, where new terms appear in the equations, leading to a positive effect of the vorticity production in case of a negative angle of attack and the opposite for a positive angle of attack.  相似文献   

20.
DNS of passive thermal turbulent Couette flow at several friction Reynolds numbers (180, 250, and 500), and the Prandtl number of air are presented. The time averaged thermal flow shows the existence of long and wide thermal structures never described before in Couette flows. These thermal structures, named CTFS (Couette Thermal Flow Superstructures), are defined as coherent regions of hot and cold temperature fluctuations. They are intrinsically linked to the velocity structures present in Couette flows. Two different 2D symmetries can be recognized, which get stronger with the Reynolds number. These structures do not affect the mean flow or mean quantities as the Nusselt number. However, turbulent intensities and thermal fluxes depend on the width of the structures, mainly far from the walls. Since the width of the structures is related to the channel width, the statistics of thermal Couette flow are to some point box-dependent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号