共查询到20条相似文献,搜索用时 15 毫秒
1.
Ethanol is identified as an interesting alternative fuel. In this regards, the predictive capability of combustion Large Eddy Simulation approach coupled to Lagrangian droplet dynamic model to retrieve the turbulent droplet dispersion, droplet size distribution, spray evolution and combustion properties is investigated in this paper for an ethanol spray flame. Following the Eulerian-Lagrangian approach with a fully two way coupling, the Favre-filtered low Mach number Navier-Stokes equations are solved on structured grids with dynamic sub-grid scale models to describe the turbulent carrier gas phase. Droplets are injected in polydisperse manner and generated in time dependent boundary conditions. They evaporate to form an air-fuel mixture that yields spray flame. Part of the ethanol droplets evaporates within the prevaporization area before reaching the combustion zone, making the flame to burn in a partially premixed regime. The chemistry is described by a tabulated detailed chemistry based on the flamelet generated manifold approach. The fuel, ethanol, is modeled by a detailed reaction mechanism consisting of 56 species and 351 reversible reactions. The simulation results including excess gas temperature, droplet velocities and corresponding fluctuations, droplet mean diameters and spray volume flux at different distances from the exit plane show good agreement with experimental data. Analysis of combustion spray features allows gaining a deep insight into the two-phase flow process ongoing. 相似文献
2.
Konstantinos Gkagkas R. Peter Lindstedt Tek S. Kuan 《Flow, Turbulence and Combustion》2009,82(4):493-509
A transported probability density function (PDF) approach closed at the joint scalar level was used to model a bluff body stabilised turbulent diffusion flame (HM2) investigated experimentally by Masri and co-workers. The current effort extends a previous study of HM1 (Re?=?15,800) to a flame with a higher degree of local extinction (Re?=?23,900). The impact of an algebraic model that accounts for local Damköhler number effects on the time-scale ratio of scalar to mechanical turbulence is also evaluated along with the impact of improved thermochemistry. The computations have been performed using a hybrid Monte Carlo/finite volume algorithm and a systematically reduced H/C/N/O mechanism featuring 300 reactions, 20 solved and 28 steady-state species. The joint scalar PDF equations were solved using moving particles in a Lagrangian framework and the velocity field was closed at the second moment level. The redistribution terms were modelled using the Generalized Langevin model of Haworth and Pope. Results show that scalar fields are reproduced with encouraging accuracy and that the revised time scale model improves agreement with experimental data. A high sensitivity to the NO chemistry was observed and encouraging agreement was obtained for the first two moments following adoption of updated reaction rates proposed in an earlier study. 相似文献
3.
The three-dimensional (3D) temperature field of the flickering flame with and without coflow can be measured using the flame reaction technique combined with tomographic reconstruction. This combined experimental technique facilitates the non-intrusive measurement of the unsteady 3D temperature field of a premixed methane/air flame. The target flame visualization, which was achieved by the flame reaction of sodium in the supplied mists of sodium chloride solution and line-of-sight intensity images of the flame, was transformed into the temperature field using calibration with the sodium D-line reversal method combined with imaging from six CCD cameras located around the flame. The uncertainty in tomographic temperature measurement was confirmed for the steady axisymmetric flame under the influence of strong coflow. Tomographic temperature measurements were applied to the flickering flame with and without coflow, and the results were analyzed using proper orthogonal decomposition (POD) to understand the unsteady behavior of the temperature field of the flickering flame. The flickering energy was found to be dominant in the first two POD modes. Flame flickering with and without coflow was found to be dominant in the axisymmetric and non-axisymmetric modes, respectively. The characteristics of the flickering flame with and without coflow are discussed in this paper, based on spectrum analysis. The results suggest that the structure of the flickering flame is highly modified by the presence of even a small magnitude of coflow. 相似文献
4.
5.
6.
The turbulence modeling in probability density function (PDF) methods is studied through applications to turbulent swirling and nonswirling co-axial jets and to the temporal shear layer. The PDF models are formulated at the level of either the joint PDF of velocity and turbulent frequency or the joint PDF of velocity, wave vector, and turbulent frequency. The methodology of wave vector models (WVMs) is based on an exact representation of rapidly distorted homogeneous turbulence, and several models are constructed in a previous paper [1]. A revision to a previously presented conditional-mean turbulent frequency model [2] is constructed to improve the numerical implementation of the model for inhomogeneous turbulent flows. A pressure transport model is also implemented in conjunction with several velocity models. The complete model yields good comparisons with available experimental data for a low swirl case. The individual models are also assessed in terms of their significance to an accurate solution of the co-axial jets, and a comparison is made to a similar assessment for the temporal shear layer. The crucial factor in determining the quality of the co-axial jet simulations is demonstrated to be the proper specification of a parameter ratio in the modeled source of turbulent frequency. The parameter specification is also shown to be significant in the temporal shear layer. 相似文献
7.
G. Sarras Y. Mahmoudi L. D. Arteaga Mendez E. H van Veen M. J. Tummers D. J. E. M. Roekaerts 《Flow, Turbulence and Combustion》2014,93(4):607-635
The structure of a turbulent non-premixed flame of a biogas fuel in a hot and diluted coflow mimicking moderate and intense low dilution (MILD) combustion is studied numerically. Biogas fuel is obtained by dilution of Dutch natural gas (DNG) with CO2. The results of biogas combustion are compared with those of DNG combustion in the Delft Jet-in-Hot-Coflow (DJHC) burner. New experimental measurements of lift-off height and of velocity and temperature statistics have been made to provide a database for evaluating the capability of numerical methods in predicting the flame structure. Compared to the lift-off height of the DNG flame, addition of 30 % carbon dioxide to the fuel increases the lift-off height by less than 15 %. Numerical simulations are conducted by solving the RANS equations using Reynolds stress model (RSM) as turbulence model in combination with EDC (Eddy Dissipation Concept) and transported probability density function (PDF) as turbulence-chemistry interaction models. The DRM19 reduced mechanism is used as chemical kinetics with the EDC model. A tabulated chemistry model based on the Flamelet Generated Manifold (FGM) is adopted in the PDF method. The table describes a non-adiabatic three stream mixing problem between fuel, coflow and ambient air based on igniting counterflow diffusion flamelets. The results show that the EDC/DRM19 and PDF/FGM models predict the experimentally observed decreasing trend of lift-off height with increase of the coflow temperature. Although more detailed chemistry is used with EDC, the temperature fluctuations at the coflow inlet (approximately 100K) cannot be included resulting in a significant overprediction of the flame temperature. Only the PDF modeling results with temperature fluctuations predict the correct mean temperature profiles of the biogas case and compare well with the experimental temperature distributions. 相似文献
8.
Andrea Giusti Maria Kotzagianni Epaminondas Mastorakos 《Flow, Turbulence and Combustion》2016,97(4):1165-1184
Large Eddy Simulations (LES) with the Conditional Moment Closure (CMC) combustion model of swirling ethanol spray flames have been performed in conditions close to blow-off for which a wide database of experimental measurements is available for both flame and spray characterization. The solution of CMC equations exploits a three-dimensional unstructured code with a first order closure for chemical source terms. It is shown that LES/CMC is able to properly capture the flame structure at different conditions and agrees reasonably well with the measurements both in terms of mean flame shape and dynamic behaviour of the flame evaluated in terms of local extinctions and statistics of the lift-off height. Experimental measurements of the overall (liquid plus gaseous) mixture fraction, performed using the Laser-Induced Breakdown Spectroscopy technique, are also included allowing further assessment and validation of the numerical method. The sensitivity of the simulation results to the various boundary conditions is discussed. 相似文献
9.
Numerical simulation results are presented for three turbulent jet diffusion flames, stabilized behind a bluff body (Sydney
Flames HM1-3). Interaction between turbulence and combustion is modeled with the transported joint-scalar PDF approach. The
focus of the study is on the impact of the quality of simulation results in physical space on the behavior of two micro-mixing
models in composition space: the Euclidean Minimum Spanning Tree (‘EMST’) model and the modified Curl coalescence dispersion
(‘CD’) model. Profiles of conditional means and variances of thermo-chemical quantities, conditioned on the mixture fraction,
are discussed in the recirculation region and in the neck zone behind. The impact of the flow and mixing fields in physical
space on the mixing model behavior in composition space is strong for the CD model and increases as the turbulence – chemistry
interaction becomes stronger. The EMST conditional profiles, on the contrary, are hardly affected. 相似文献
10.
A joint probability distribution function of a conservative scalar (mixture fraction) and its gradient is predicted numerically.
Statistical moments of this function are compared to their approximations, direct numerical simulation data, and also to the
results obtained by simplified models for a conditional rate of scalar dissipation, the surface density function, and the
one-point PDF of scalar fluctuation under homogeneous isotropic turbulence. The results allow to evaluate the performance
of existing statistical micromixing models. 相似文献
11.
12.
Large-eddy simulations (LES) combined with the transported probability density function (PDF) method are carried out for two turbulent piloted premixed methane-air jet flames (flame F1 and flame F3) to assess the capability of LES/PDF for turbulent premixed combustion. The conventionally used model for the sub-filter scale mixing time-scale (or the mixing frequency) fails to capture the premixed flames correctly. This failure is expected to be caused by the lack of the sub-filter scale premixed flame propagation property in the sub-filter scale mixing process when the local flame front is under-resolved. It leads to slower turbulent premixed flame propagation and wider flame front. A new model for specifying the sub-filter scale mixing frequency is developed to account for the effect of sub-filter scale chemical reaction on mixing, based on past development of models for the sub-filter scale scalar dissipation rate in premixed combustion. The new model is assessed in the two turbulent premixed jet flames F1 and F3. Parametric studies are performed to examine the new model and its sensitivity when combined with the different mixing models. Significantly improved performance of the new mixing frequency model is observed to capture the premixed flame propagation reasonably, when compared with the conventional model. The sensitivity of the flame predictions is found be relatively weak to the different mixing models in conjunction with the new mixing frequency model. 相似文献
13.
Zhen Lu Lei Zhou Zhuyin Ren Tianfeng Lu Chung K. Law 《Flow, Turbulence and Combustion》2016,97(2):609-629
Accurate modelling of spray combustion process is essential for efficiency improvement and emissions reduction in practical combustion engines. In this work, both unsteady Reynolds-averaged Navier-Stokes (URANS) simulations and large eddy simulations (LES) are performed to investigate the effects of spray and turbulence modelling on the mixing and combustion characteristics of an n-heptane spray flame in a constant volume chamber at realistic conditions. The non-reacting spray process is first simulated with URANS to investigate the effects of entrainment gas-jet model on the penetration characteristics and fuel vapor distributions. It is found that the droplet motion near the nozzle has significant influence on the fuel vapor distribution, while the liquid penetration length is controlled by the evaporation process and insensitive to gas-jet model. For the case considered, both URANS with the gas-jet model and large eddy simulations can properly predict the vapor penetration. For the combustion characteristics, it is found that LES yields better predictions in the global combustion characteristics. The URANS with gas jet model yields a comparable flame length and lift-off-length (LOL) to LES, but results in a larger ignition delay time compared to the experimental data. Another focus of this work is to qualify the convergence characteristics of the dynamic adaptive chemistry (DAC) method in these transient combustion simulations, where DAC is applied to reduce the mechanism locally and on-the-fly to accelerate chemistry calculations. The instantaneous flame structures and global combustion characteristics such as ignition delay time, flame lift-off length and emissions are compared between simulations with and without DAC. For URANS, good agreements are observed both on instantaneous flame structures and global characteristics. For LES, it is shown that the errors incurred by DAC are small for scatter distributions in composition space and global combustion characteristics, while they may significantly affect instantaneous flame structures in physical space. The study reveals that for DAC application in transient simulations, global or statistic information should be used to assess the accuracy, such as manifolds in composition space, conditional quantities and global combustion characteristics. For the cases investigated, a speed-up factor of more than two is achieved by DAC with a 92-species skeletal mechanism with less than 0.2 % and 3.0 % discrepancy in ignition delay and LOL, respectively. 相似文献
14.
15.
16.
Fredrik Grøvdal Sigurd Sannan Jyh-Yuan Chen Alan R. Kerstein Terese Løvås 《Flow, Turbulence and Combustion》2018,101(4):993-1007
A new methodology for modeling and simulation of reactive flows is reported in which a 3D formulation of the Linear Eddy Model (LEM3D) is used as a post-processing tool for an initial RANS simulation. In this hybrid approach, LEM3D complements RANS with unsteadiness and small-scale resolution in a computationally efficient manner. To demonstrate the RANS-LEM3D model, the hybrid model is applied to a lifted turbulent N2-diluted hydrogen jet flame in a vitiated co-flow of hot products from lean H2/air combustion. In the present modeling approach, mean-flow information from RANS provides model input to LEM3D, which returns the scalar statistics needed for more accurate mixing and reaction calculations. Flame lift-off heights and flame structure are investigated in detail, along with other characteristics not available from RANS alone, such as the instantaneous and detailed species profiles and small-scale mixing. 相似文献
17.
R. Mercier P. Auzillon V. Moureau N. Darabiha O. Gicquel D. Veynante B. Fiorina 《Flow, Turbulence and Combustion》2014,93(2):349-381
Common combustion chambers often exhibit turbulent flames propagating in partially-premixed mixtures. This propagation is generally governed by aerodynamics, unsteady mixing and chemical processes and may also be affected by conductive heat losses when the reactive zone develops close to the burner lips. The Filtered TAbulated Chemistry for Large Eddy Simulation (F-TACLES) model has been recently developed to include tabulated chemistry in Large Eddy Simulation (LES) of adiabatic stratified flames in flamelet regimes. The present article proposes a modeling approach to account for both differential diffusion and non-adiabatic effects on flame consumption speed following the F-TACLES formalism. The adiabatic F-TACLES model is first detailed using a generalized formalism for diffusive fluxes allowing either to account for differential diffusion or not. The F-TACLES model is then extended to non-adiabatic situations. A correction factor based on the non-adiabatic consumption rate is introduced to recover a realistic filtered flame consumption speed. The objective is here to tackle flame stabilization mechanisms when heat losses affect the reaction zone. The proposed approach is validated through the simulation of the unconfined stratified turbulent jet flame TSF-A for which stabilization process is affected by heat losses. Five simulations are performed for both adiabatic and non-adiabatic flow conditions comparing unity Lewis number and complex diffusion assumptions. The adiabatic F-TACLES model predicts a flame anchored at the burner lip disagreeing with experimental data. The non-adiabatic simulation exhibits local extinction due to heat losses near the burner exit. The flame is then lifted improving the comparison with experiments. Results also show a significant impact of molecular diffusion model on both mean flame consumption rate and angle. 相似文献
18.
In this paper, a novel model for turbulent premixed combustion in the corrugated flamelet regime is presented, which is based on transporting a joint probability density function (PDF) of velocity, turbulence frequency and a scalar vector. Due to the high dimensionality of the corresponding sample space, the PDF equation is solved with a Monte-Carlo method, where individual fluid elements are represented by computational particles. Unlike in most other PDF methods, the source term not only describes reaction rates, but accounts for “ignition” of reactive unburnt fluid elements due to propagating embedded quasi laminar flames within a turbulent flame brush. Unperturbed embedded flame structures and a constant laminar flame speed (as expected in the corrugated flamelet regime) are assumed. The probability for an individual particle to “ignite” during a time step is calculated based on an estimate of the mean flame surface density (FSD), latter gets transported by the PDF method. Whereas this model concept has recently been published [21], here, a new model to account for local production and dissipation of the FSD is proposed. The following particle properties are introduced: a flag indicating whether a particle represents the unburnt mixture; a flame residence time, which allows to resolve the embedded quasi laminar flame structure; and a flag indicating whether the flame residence time lies within a specified range. Latter is used to transport the FSD, but to account for flame stretching, curvature effects, collapse and cusp formation, a mixing model for the residence time is employed. The same mixing model also accounts for molecular mixing of the products with a co-flow. To validate the proposed PDF model, simulation results of three piloted methane-air Bunsen flames are compared with experimental data and very good agreement is observed. 相似文献
19.
Bradley A. Ochs Dan Fries Devesh Ranjan Suresh Menon 《Flow, Turbulence and Combustion》2018,101(3):927-951
It is unclear whether turbulent flame speed scalings established in low speed regimes are applicable to supersonic flames. To investigate this question, the canonical flame kernel is investigated in a scramjet-like channel having a one degree wall divergence. The growth, shape and internal kernel dynamics are investigated. Results are presented for three Mach numbers, four equivalence ratios, and three turbulence generators. Schlieren photography provides flame images for growth rate statistics and particle image velocimetry (PIV) provides turbulence statistics and investigation of internal kernel dynamics. Supersonic flame kernels are self-propagating and respond to the equivalence ratio in a fashion that is similar to low speed flames. However, supersonic flame kernels have features that are not present in subsonic flame kernels. Baroclinicity, resulting from pressure-density misalignment, creates a reacting vortex ring structure. Further, the mean kernel shape has a Mach number dependence and the vortex ring enhances the turbulent flame speed through entrainment of reactants and augmented flame surface growth. Hence, the previously established (low speed) flame speed scalings are inappropriate for supersonic flame kernels. Drawing motivation from vortex ring literature, the ring propagation velocity is used as the characteristic velocity and a new flame speed scaling is proposed. 相似文献
20.
This paper presents the results of a parametric study concerning the phenomenon of liftoff of a nonpremixed jet flame. The dependence of liftoff height on jet exit velocity and coflow velocity is described. It is shown that lifted flames become less sensitive to jet exit velocity as the stabilization point recedes from the burner exit. The results reveal that in cases of extreme liftoff height, increases in jet exit velocity with a constant coflow cause some ethylene flames to stabilize closer to the burner. The success of current theories on lifted flame stabilization in comparison to the experimental results of this study are assessed. The existence of multiple regimes for flame stabilization, incorporating aspects of both premixed and nonpremixed combustion, is proposed. 相似文献