首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The head on quenching of statistically planar turbulent premixed flames by an isothermal inert wall has been analysed using three-dimensional Direct Numerical Simulation (DNS) data for different values of global Lewis number Le(0.8, 1.0 and 1.2) and turbulent Reynolds number Ret. The statistics of head on quenching have been analysed in terms of the wall Peclet number Pe (i.e. distance of the flame from the wall normalised by the Zel’dovich flame thickness) and the normalised wall heat flux Φ. It has been found that the maximum (minimum) value of Φ(Pe) for the turbulent Le=0.8 cases are greater (smaller) than the corresponding laminar value, whereas both Pe and Φ in turbulent cases remain comparable to the corresponding laminar values for Le=1.0 and 1.2. Detailed physical explanations are provided for the observed Le dependences of Pe and Φ. The existing closure of mean reaction rate \(\overline {\dot {\omega }}\) using the scalar dissipation rate (SDR) in the near wall region has been assessed based on a-priori analysis of DNS data and modifications to the existing closures of mean reaction rate and SDR have been suggested to account for the wall effects in such a manner that the modified closures perform well both near to and away from the wall.  相似文献   

2.
A newly developed fractal dynamic SGS (FDSGS) combustion model and a scale self-recognition mixed (SSRM) SGS stress model are evaluated along with other SGS combustion, scalar flux and stress models in a priori and a posteriori manners using DNS data of a hydrogen-air turbulent plane jet premixed flame. A posteriori tests reveal that the LES using the FDSGS combustion model can predict the combustion field well in terms of mean temperature distributions and peak positions in the transverse distributions of filtered reaction progress variable fluctuations. A priori and a posteriori tests of the scalar flux models show that a model proposed by Clark et al. accurately predicts the counter-gradient transport as well as the gradient diffusion, and introduction of the model of Clark et al. into the LES yields slightly better predictions of the filtered progress variable fluctuations than that of a gradient diffusion model. Evaluations of the stress models reveal that the LES with the SSRM model predicts the velocity fluctuations well compared to that with the Smagorinsky model.  相似文献   

3.
The objective of this study is to evaluate conditional moment closure (CMC) approaches to model chemical reaction rates in compositionally stratified, autoigniting mixtures, in thermochemical conditions relevant to stratified charge compression ignition (SCCI) engines. First-order closure, second-order closure and double conditioning are evaluated and contrasted as options in comparison to a series of direct numerical simulations (DNSs). The two-dimensional (2D) DNS cases simulate ignitions in SCCI-like thermochemical conditions with compositionally stratified n-heptane/air mixtures in a constant volume. The cases feature two different levels of stratification with three mean temperatures in the negative-temperature coefficient (NTC) regime of ignition delay times. The first-order closure approach for reaction rates is first assessed using hybrid DNS-CMC a posteriori tests when implemented in an open source computational fluid dynamics (CFD) package known as OpenFOAM\(^{{\circledR }}\). The hybrid DNS-CMC a posteriori tests are not a full CMC but a DNS-CMC hybrid in that they compute the scalar and velocity fields at the DNS resolution, thus isolating the first-order reaction rate closure model as the main source of modelling error (as opposed to turbulence model, scalar probability density function model, and scalar dissipation rate model). The hybrid DNS-CMC a posteriori test reveals an excellent agreement between the model and DNS for the cases with low levels of stratification, whereas deviations from the DNS are observed in cases which exhibit high level of stratifications. The a priori analysis reveals that the reason for disagreement is failure of the first-order closure hypothesis in the model due to the high level of conditional fluctuations. Second-order and double conditioning approaches are then evaluated in a priori tests to determine the most promising path forwards in addressing higher levels of stratification. The a priori tests use the DNS data to compute the model terms, thus directly evaluating the model assumptions. It is shown that in the cases with a high level of stratification, even the second-order estimation of the reaction rate source term cannot provide a reasonably accurate closure. Double conditioning using mixture-fraction and sensible enthalpy, however, provides an accurate first-order closure to the reaction rate source term.  相似文献   

4.
A three-dimensional compressible Direct Numerical Simulation (DNS) analysis has been carried out for head-on quenching of a statistically planar stoichiometric methane-air flame by an isothermal inert wall. A multi-step chemical mechanism for methane-air combustion is used for the purpose of detailed chemistry DNS. For head-on quenching of stoichiometric methane-air flames, the mass fractions of major reactant species such as methane and oxygen tend to vanish at the wall during flame quenching. The absence of \(\text {OH}\) at the wall gives rise to accumulation of carbon monoxide during flame quenching because \(\text {CO}\) cannot be oxidised anymore. Furthermore, it has been found that low-temperature reactions give rise to accumulation of \(\text {HO}_{2}\) and \(\mathrm {H}_{2}\mathrm {O}_{2}\) at the wall during flame quenching. Moreover, these low temperature reactions are responsible for non-zero heat release rate at the wall during flame-wall interaction. In order to perform an in-depth comparison between simple and detailed chemistry DNS results, a corresponding simulation has been carried out for the same turbulence parameters for a representative single-step Arrhenius type irreversible chemical mechanism. In the corresponding simple chemistry simulation, heat release rate vanishes once the flame reaches a threshold distance from the wall. The distributions of reaction progress variable c and non-dimensional temperature T are found to be identical to each other away from the wall for the simple chemistry simulation but this equality does not hold during head-on quenching. The inequality between c (defined based on \(\text {CH}_{4}\) mass fraction) and T holds both away from and close to the wall for the detailed chemistry simulation but it becomes particularly prominent in the near-wall region. The temporal evolutions of wall heat flux and wall Peclet number (i.e. normalised wall-normal distance of \(T = 0.9\) isosurface) for both simple and detailed chemistry laminar and turbulent cases have been found to be qualitatively similar. However, small differences have been observed in the numerical values of the maximum normalised wall heat flux magnitude \(\left ({\Phi }_{\max } \right )_{\mathrm {L}}\) and the minimum Peclet number \((Pe_{\min })_{\mathrm {L}}\) obtained from simple and detailed chemistry based laminar head-on quenching calculations. Detailed explanations have been provided for the observed differences in behaviours of \(\left ({\Phi }_{\max }\right )_{\mathrm {L}}\) and \((Pe_{\min })_{\mathrm {L}}\). The usual Flame Surface Density (FSD) and scalar dissipation rate (SDR) based reaction rate closures do not adequately predict the mean reaction rate of reaction progress variable in the near-wall region for both simple and detailed chemistry simulations. It has been found that recently proposed FSD and SDR based reaction rate closures based on a-priori DNS analysis of simple chemistry data perform satisfactorily also for the detailed chemistry case both away from and close to the wall without any adjustment to the model parameters.  相似文献   

5.
Two-dimensional numerical simulations of the Richtmyer–Meshkov unstable “shock-jet” problem are conducted using both large-eddy simulation (LES) and unsteady Reynolds-averaged Navier–Stokes (URANS) approaches in an arbitrary Lagrangian–Eulerian hydrodynamics code. Turbulence statistics are extracted from LES by running an ensemble of simulations with multimode perturbations to the initial conditions. Detailed grid convergence studies are conducted, and LES results are found to agree well with both experiment and high-order simulations conducted by Shankar et al. (Phys Fluids 23, 024102, 2011). URANS results using a kL approach are found to be highly sensitive to initialization of the turbulence lengthscale L and to the time at which L becomes resolved on the computational mesh. It is observed that a gradient diffusion closure for turbulent species flux is a poor approximation at early times, and a new closure based on the mass-flux velocity is proposed for low-Reynolds-number mixing.  相似文献   

6.
The mechanisms for nonlinear saturation of a bluff-body stabilised turbulent premixed flame are investigated using LES with the transported flame surface density (TFSD) approach to combustion modelling. The numerical simulation is based on a previous detailed experimental investigation. Results for both the unforced non-reacting and reacting flows are validated against experiment, demonstrating that the fundamental flow features and predicted flame structure are well captured. Key terms in the FSD transport equation are then used to describe the generation and destruction of flame surface area for the unforced reacting flow. In order to investigate the non-linear response of the unsteady heat release rate to acoustic forcing, four harmonically forced flames are considered having the same forcing frequency (160 Hz) but different amplitudes of 10 %, 25 %, 50 % and 64 % of the mean inlet velocity. The flame response is characterised using the Flame Describing Function (FDF). Accurate prediction of the FDF is obtained using the current approach. The computed forced flame structure matches well with the experiment, where effects of shear layer rollup and growth of the vortices on the flame can be clearly observed. Transition to nonlinearity is also observed in the computed FDF. The mechanisms leading to the saturation of the flame response in the higher amplitude case are characterised by inspecting the terms in the FSD transport equation at conditions when the integrated heat release is at its maximum and minimum, respectively. Pinch-off and flame rollup can be seen in snapshots taken at the phase angle of maximum integrated heat release. Conversely, intense vortex shedding and flame-sheet collapse around the shear-layer, as well as small-scale destruction of flame elements in the wake, can be seen in snapshots taken at the phase angle of minimum integrated heat release. The pivotal role of FSD destruction on nonlinear saturation of the flame response is confirmed through the analysis of phase-averaged terms in the FSD transport equation taken at different locations. The phase-averaged subgrid curvature term is found to concentrate in the cusps and downstream regions where flame annihilation is dominant.  相似文献   

7.
We study the time asymptotic propagation of solutions to the reaction–diffusion cooperative systems with fractional diffusion. We prove that the propagation speed is exponential in time, and we find the precise exponent of propagation. This exponent depends on the smallest index of the fractional laplacians and on the principal eigenvalue of the matrix DF(0) where F is the reaction term. We also note that this speed does not depend on the space direction.  相似文献   

8.
9.
The influences of fuel Lewis number Le F on localised forced ignition of inhomogeneous mixtures are analysed using three-dimensional compressible Direct Numerical Simulations (DNS) of turbulent mixing layers for Le F  = 0.8, 1.0 and 1.2 and a range of different root-mean-square turbulent velocity fluctuation u′ values. For all Le F cases a tribrachial flame has been observed in case of successful ignition. However, the lean premixed branch tends to merge with the diffusion flame on the stoichiometric mixture fraction isosurface at later stages of the flame evolution. It has been observed that the maximum values of temperature and reaction rate increase with decreasing Le F during the period of external energy addition. Moreover, Le F is found to have a significant effect on the behaviours of mean temperature and fuel reaction rate magnitude conditional on mixture fraction values. It is also found that reaction rate and mixture fraction gradient magnitude \(\vert \nabla \xi \vert \) are negatively correlated at the most reactive region for all values of Le F explored. The probability of finding high values of \(\vert \nabla \xi \vert \) increases with increasing Le F . For a given value of u′, the extent of burning decreases with increasing Le F . A moderate increase in u′ gives rise to an increase in the extent of burning for Le F  = 0.8 and 1.0, which starts to decrease with further increases in u′. For Le F  = 1.2, the extent of burning decreases monotonically with increasing u′. The extent of edge flame propagation on the stoichiometric mixture fraction ξ = ξ st isosurface is characterised by the probability of finding burned gas on this isosurface, which decreases with increasing u′ and Le F . It has been found that it is easier to obtain self-sustained combustion following localised forced ignition in case of inhomogeneous mixtures than that in the case of homogeneous mixtures with the same energy input, energy deposition duration when the ignition centre is placed at the stoichiometric mixture. The difficultly to sustain combustion unaided by external energy addition in homogeneous mixture is particularly prevalent in the case of Le F  = 1.2.  相似文献   

10.
We study turbulent plane Couette-Poiseuille (CP) flows in which the conditions (relative wall velocity ΔU w ≡ 2U w , pressure gradient dP/dx and viscosity ν) are adjusted to produce zero mean skin friction on one of the walls, denoted by APG for adverse pressure gradient. The other wall, FPG for favorable pressure gradient, provides the friction velocity u τ , and h is the half-height of the channel. This leads to a one-parameter family of one-dimensional flows of varying Reynolds number Re ≡ U w h/ν. We apply three codes, and cover three Reynolds numbers stepping by a factor of two each time. The agreement between codes is very good, and the Reynolds-number range is sizable. The theoretical questions revolve around Reynolds-number independence in both the core region (free of local viscous effects) and the two wall regions. The core region follows Townsend’s hypothesis of universal behavior for the velocity and shear stress, when they are normalized with u τ and h; on the other hand universality is not observed for all the Reynolds stresses, any more than it is in Poiseuille flow or boundary layers. The FPG wall region obeys the classical law of the wall, again for velocity and shear stress. For the APG wall region, Stratford conjectured universal behavior when normalized with the pressure gradient, leading to a square-root law for the velocity. The literature, also covering other flows with zero skin friction, is ambiguous. Our results are very consistent with both of Stratford’s conjectures, suggesting that at least in this idealized flow turbulence theory is successful like it was for the classical logarithmic law of the wall. We appear to know the constants of the law within a 10% bracket. On the other hand, that again does not extend to Reynolds stresses other than the shear stress, but these stresses are passive in the momentum equation.  相似文献   

11.
Mixing and a nonlinear bimolecular chemical reaction (reactant A + reactant B → product; reaction rate r?=?κc 1 c 2) in laminar shear flow are investigated. It is found that asymptotically the dominant balance between the rates of production and dissipation of the mean-squared concentration fluctuations \((\sigma_{c_1 }^2 ,\sigma_{c_2 }^2)\) and cross-covariance of concentration fluctuations \((\overline {c_1 c_2 })\) occurs under nonreactive and reactive conditions. Longitudinal dispersion of the cross-sectional averages (C 1, C 2), and variances and the cross-covariance of reactant concentrations can be asymptotically quantified by the classic Taylor dispersion coefficient (D) even under reactive conditions. The characteristic time-scale (τ) over which molecular diffusion dissipates concentration variance and the cross-covariance of reactant concentrations is also shown to be the same under nonreactive and reactive conditions. A variational estimate of τ is shown to be close to the values inferred from detailed numerical simulation. The production-dissipation balance implies that the cross-sectional averaged reaction rate follows \(\overline r =\kappa_{eff} C_1 C_2 \) and \(\kappa _{eff} \approx \kappa \left[ {1+2D\tau \left( {{\partial \ln C_1 } \mathord{\left/ {\vphantom {{\partial \ln C_1 } {\partial x}}} \right. \kern-\nulldelimiterspace} {\partial x}} \right)\left( {{\partial \ln C_2 } \mathord{\left/ {\vphantom {{\partial \ln C_2 } {\partial x}}} \right. \kern-\nulldelimiterspace} {\partial x}} \right)} \right]\). The effective reaction rate parameter (κ eff ) is higher than that of well-mixed batch test reaction rate constant (κ) for initially overlapping species and κ eff is smaller than κ for initially non-overlapping species.  相似文献   

12.
A lean premixed propane/air bluff-body stabilized flame (Volvo test rig) is calculated using the Scale-Adaptive Simulation turbulence model (SAS) and Large-Eddy simulations (LES) as well as the conventional Reynolds-averaged approach (RAS). RAS and SAS are closed by the standard k-?? and the k-ω Shear Stress Transport (SST) turbulence models, respectively. The conventional Smagorinsky and the k-equation sub-grid scales models are used for the LES closure. Effects of the sub-grid scalar flux modeling using the classical gradient hypothesis and Clark’s tensor diffusivity closures both for the inert and reactive LES flows are discussed. The Eddy Dissipation Concept (EDC) is used for the turbulence-chemistry interaction. It assumes that molecular mixing and the subsequent combustion occur in the ’fine structures’ (smaller dissipative eddies, which are close to the Kolmogorov scales). Assuming the full turbulence energy cascade, the characteristic length and velocity scales of the ’fine structures’ are evaluated using different turbulence models (RAS, SAS and LES). The finite-rate chemical kinetics is taken into account by treating the ’fine structures’ as constant pressure and adiabatic homogeneous reactors, calculated as a system of ordinary-differential equations (ODEs) described by a Perfectly Stirred Reactor (PSR) concept. Several further enhancements to model the PSRs are proposed, including a new Livermore Solver (LSODA) for integrating stiff ODEs and a new correction to calculate the PSR time scales. All models have been implemented as a stand-alone application \(\text {edcPisoFoam}\) based on the OpenFOAM technology. Additionally, several RAS calculations were performed using the Turbulence Flame Speed Closure model in Ansys Fluent to assess effects of the heat losses by modeling the conjugate heat transfer between the bluff-body and the reactive flow. Effects of the turbulence Schmidt number on RAS results are discussed as well. Numerical results are compared with available experimental data. Reasonable consistency between experimental data and numerical results provided by RAS, SAS and LES is observed. In general, there is satisfactory agreement between present LES-EDC simulations, numerical results by other authors and measurements without any major modification to the EDC closure constants, which gives a quite reasonable indication on the adequacy and accuracy of the method and its further application for turbulent premixed combustion simulations.  相似文献   

13.
The influences of fuel Lewis number LeF on localised forced ignition of globally stoichiometric stratified mixtures have been analysed using three-dimensional compressible Direct Numerical Simulations (DNS) for cases with LeF ranging from 0.8 to 1.2. The globally stoichiometric stratified mixtures with different values of root-mean-square (rms) equivalence ratio fluctuation (i.e. ?= 0.2, 0.4 and 0.6) and the Taylor micro-scale l? of equivalence ratio ? variation (i.e. l?/lf= 2.1, 5.5 and 8.3 with lf being the Zel’dovich flame thickness of the stoichiometric laminar premixed flame) have been considered for different initial rms values of turbulent velocity u. A pseudo-spectral method is used to initialise the equivalence ratio variation following a presumed bi-modal distribution for prescribed values of ? and l?/lf for global mean equivalence ratio 〈?〉=1.0. The localised ignition is accounted for by a source term in the energy transport equation that deposits energy for a stipulated time interval. It has been observed that the maximum values of temperature and the fuel reaction rate magnitude increase with decreasing LeF during the period of external energy deposition. The initial values of LeF, u/Sb(?=1), ? and l?/lf have been found to have significant effects on the extent of burning of the stratified mixtures following localised ignition. For a given value of u/Sb(?=1), the extent of burning decreases with increasing LeF. An increase in u leads to a monotonic reduction in the burned gas mass for all values of LeF in all stratified mixture cases but an opposite trend is observed for the LeF=0.8 homogeneous mixture. It has been found that an increase in ? has adverse effects on the burned gas mass, whereas the effects of l?/lf on the extent of burning are non-monotonic and dependent on ? and LeF. Detailed physical explanations have been provided for the observed LeF, u/Sb(?=1), ? and l?/lf dependences.  相似文献   

14.
A direct numerical simulation database of the flow around a NACA4412 wing section at R e c = 400,000 and 5° angle of attack (Hosseini et al. Int. J. Heat Fluid Flow 61, 117–128, 2016), obtained with the spectral-element code Nek5000, is analyzed. The Clauser pressure-gradient parameter β ranges from ? 0 and 85 on the suction side, and from 0 to ? 0.25 on the pressure side of the wing. The maximum R e ?? and R e τ values are around 2,800 and 373 on the suction side, respectively, whereas on the pressure side these values are 818 and 346. Comparisons between the suction side with zero-pressure-gradient turbulent boundary layer data show larger values of the shape factor and a lower skin friction, both connected with the fact that the adverse pressure gradient present on the suction side of the wing increases the wall-normal convection. The adverse-pressure-gradient boundary layer also exhibits a more prominent wake region, the development of an outer peak in the Reynolds-stress tensor components, and increased production and dissipation across the boundary layer. All these effects are connected with the fact that the large-scale motions of the flow become relatively more intense due to the adverse pressure gradient, as apparent from spanwise premultiplied power-spectral density maps. The emergence of an outer spectral peak is observed at β values of around 4 for λ z ? 0.65δ 99, closer to the wall than the spectral outer peak observed in zero-pressure-gradient turbulent boundary layers at higher R e ?? . The effect of the slight favorable pressure gradient present on the pressure side of the wing is opposite the one of the adverse pressure gradient, leading to less energetic outer-layer structures.  相似文献   

15.
We numerically study spray-flame dynamics. The initial state of the spray is schematized by alkane droplets located at the nodes of a face-centered 2D-lattice. The droplets are surrounded by a gaseous mixture of alkane and air. The lattice spacing s reduced by the combustion length scale is large enough to consider that the chemical reaction occurs in a heterogeneous medium. The overall spray equivalence ratio is denoted by ?T, with ?T = ?L + ?G, where ?G corresponds to the equivalence ratio of the gaseous surrounding mixture at the initial saturated partial pressure, while ?L is the so-called liquid loading. To model such a heterogenous combustion, the retained chemical scheme is a global irreversible one-step reaction governed by an Arrhenius law, with a modified heat of reaction depending on the local equivalence ratio. ?T is chosen in the range 0.9 ≤ ?T ≤ 2. Three geometries (s = 3, s = 6, s = 12) and four liquid loadings, ?L = 0.3, ?L = 0.5, ?L = 0.7, ?L = 0.85 are studied. In the rich sprays, our model qualitatively retrieves the recent experimental measurements: the rich spray-flames can propagate faster than the single-phase flames with the same overall equivalence ratio. To analyse the conditions for this enhancement, we introduce the concept of “spray Peclet number”, which compares the droplet vaporization time with the combustion propagation time of the single-phase flame spreading in the fresh surrounding mixture.  相似文献   

16.
LES of the Cambridge Stratified Swirl Burner using a Sub-grid pdf Approach   总被引:1,自引:0,他引:1  
The sub-grid scale probability density function equation is rearranged in order to separate the resolved and sub-grid-scale (sgs) contributions to the sgs mixing term. This allows modelling that is consistent with the limiting case of negligible sub-grid scale variations, a property required for applications to laboratory premixed flames. The new method is applied to the Cambridge Stratified Swirl Burner for 6 operating conditions, 2 isothermal and 4 burning, with varying degrees of swirl and mixture stratification. The simulations are performed with the Large Eddy Simulation (LES) code BOFFIN in which the modelled pdf transport equation is solved using the Eulerian stochastic field method. Eight stochastic fields are used to account for the influence of the sub-grid fluctuations and the chemistry is modelled with a reduced version of the GRI 3.0 mechanism for methane involving 19 species and 15 reaction steps. The simulated velocities for both the isothermal and burning cases show good agreement with the experimental data. The measured temperature and major species profiles are also reproduced to a good accuracy.  相似文献   

17.
The analysis of the group properties and the search for self-similar solutions in problems of mathematical physics and continuum mechanics have always been of interest, both theoretical and applied [1–3]. Self-similar solutions of parabolic problems that depend only on a variable of the type η = x/√t are classical fundamental solutions of the one-dimensional linear and nonlinear heat conduction equations describing numerous physical phenomena with initial discontinuities on the boundary [4]. In this study, the term “generalized vortex diffusion” is introduced in order to unify the different processes in mechanics modeled by these problems. Here, vortex layer diffusion and vortex filament diffusion in a Newtonian fluid [5] can serve as classical hydrodynamic examples. The cases of self-similarity with respect to the variable η are classified for fairly general kinematics of the processes, physical nonlinearities of the medium, and types of boundary conditions at the discontinuity points. The general initial and boundary value problem thus formulated is analyzed in detail for Newtonian and non-Newtonian power-law fluids and a medium similar in behavior to a rigid-ideally plastic body. New self-similar solutions for the shear stress are derived.  相似文献   

18.
I investigate the effect of tube diameter D and red blood cell capillary number Ca (i.e. the ratio of viscous to elastic forces) on platelet margination in blood flow at ≈37 % tube haematocrit. The system is modelled as three-dimensional suspension of deformable red blood cells and nearly rigid platelets using a combination of the lattice-Boltzmann, immersed boundary and finite element methods. Results of simulations during the dynamics before the steady state has been reached show that a non-diffusive radial platelet transport facilitates margination. This non-diffusive effect is important near the edge of the cell-free layer, but only for Ca > 0.2, when red blood cells are tank-treading. I also show that platelet trapping in the cell-free layer is reversible for Ca ≤ 0.2. Margination is essentially independent of Ca only for the smallest investigated tube diameter (D = 10 μm). Once platelets have reached the cell-free layer, they tend to slide rather than tumble. The tumbling rate is essentially independent of Ca but increases with D. Strong confinement suppresses tumbling due to the relatively small cell-free layer thickness at ≈ 37 % tube haematocrit.  相似文献   

19.
Given bounded vector field \({b : {\mathbb{R}^{d}} \to {\mathbb{R}^{d}}}\), scalar field \({u : {\mathbb{R}^{d}} \to {\mathbb{R}}}\), and a smooth function \({\beta : {\mathbb{R}} \to {\mathbb{R}}}\), we study the characterization of the distribution \({{\rm div}(\beta(u)b)}\) in terms of div b and div(ub). In the case of BV vector fields b (and under some further assumptions), such characterization was obtained by L. Ambrosio, C. De Lellis and J. Malý, up to an error term which is a measure concentrated on the so-called tangential set of b. We answer some questions posed in their paper concerning the properties of this term. In particular, we construct a nearly incompressible BV vector field b and a bounded function u for which this term is nonzero. For steady nearly incompressible vector fields b (and under some further assumptions), in the case when d = 2, we provide complete characterization of div(\({\beta(u)b}\)) in terms of div b and div(ub). Our approach relies on the structure of level sets of Lipschitz functions on \({{\mathbb{R}^{2}}}\) obtained by G. Alberti, S. Bianchini and G. Crippa. Extending our technique, we obtain new sufficient conditions when any bounded weak solution u of \({\partial_t u + b \cdot \nabla u=0}\) is renormalized, that is when it also solves \({\partial_t \beta(u) + b \cdot \nabla \beta(u)=0}\) for any smooth function \({\beta \colon{\mathbb{R}} \to {\mathbb{R}}}\). As a consequence, we obtain new a uniqueness result for this equation.  相似文献   

20.
The Wasserstein distances Wp (p \({\geqq}\) 1), defined in terms of a solution to the Monge–Kantorovich problem, are known to be a useful tool to investigate transport equations. In particular, the Benamou–Brenier formula characterizes the square of the Wasserstein distance W2 as the infimum of the kinetic energy, or action functional, of all vector fields transporting one measure to the other. Another important property of the Wasserstein distances is the Kantorovich–Rubinstein duality, stating the equality between the distance W1(μ, ν) of two probability measures μ, ν and the supremum of the integrals in d(μ ?ν) of Lipschitz continuous functions with Lipschitz constant bounded by one. An intrinsic limitation of Wasserstein distances is the fact that they are defined only between measures having the same mass. To overcome such a limitation, we recently introduced the generalized Wasserstein distances \({W_p^{a,b}}\), defined in terms of both the classical Wasserstein distance Wp and the total variation (or L1) distance, see (Piccoli and Rossi in Archive for Rational Mechanics and Analysis 211(1):335–358, 2014). Here p plays the same role as for the classic Wasserstein distance, while a and b are weights for the transport and the total variation term. In this paper we prove two important properties of the generalized Wasserstein distances: (1) a generalized Benamou–Brenier formula providing the equality between \({W_2^{a,b}}\) and the supremum of an action functional, which includes a transport term (kinetic energy) and a source term; (2) a duality à la Kantorovich–Rubinstein establishing the equality between \({W_1^{1,1}}\) and the flat metric.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号