首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this paper, the flow around the surface-mounted cube is decomposed into modes using Proper Orthogonal Decomposition (POD) and Koopman mode decomposition, respectively. The objective of the paper is twofold. Firstly, a comparison of the two decomposition methods for a highly separated flow is performed. Secondly, an evaluation of Detached Eddy Simulation (DES) for simulating a time-accurate flow, to be used as input data for the two mode decomposition methods, is accomplished. The knowledge on the accuracy and usefulness of the modes computed with from DES flow fields can then be the foundation for other studies for applied geometries in vehicle aerodynamics. The flow is simulated using DES, which enables time-accurate simulations on flows around realistic vehicle geometries. Most of the first eight modes computed with DES in a reference domain can also be found among the first eight computed with LES in reference work. Since the POD modes computed with DES resemble those computed with LES, the conclusion is that DES is suitable to use for mode decomposition. When comparing the POD and Koopman modes, many similarities can be found in both the spatial and temporal modes. For this case, where the flow contains a broad band of frequencies, it is concluded that the advantage of using Koopman modes, decomposing by frequency, cannot be fully utilized, and Koopman modes are very similar to the POD modes.  相似文献   

2.
In this paper, numerical studies are reported on the effect of flow-flame interaction at large and medium scales and its impact on flame stabilization in a lean premixed low swirl stabilized methane/air flame. The numerical simulations are based on a large eddy simulation (LES) approach with a three-scalar flamelet model with equations for mixture fraction and fuel mass fraction and the level-set G-equation to account respectively for stratification of the mixture, fuel leakage at the trailing edge of the flame, and tracking of the flame front. Distinct frequencies, associated with the flame stabilization process, are identified from point data of LES in the outer and inner shear layers of the burner induced flow field. To understand the effect of the spatial structures related to the observed flow frequencies, a dynamic mode decomposition (DMD) is performed. Based on the analysis of LES data, frequency specific coherent flow structures are extracted along with associated flame structures through an extended version of DMD. The inner shear layer generated vortices are associated with recurring frequency specific coherent structures of both flow and flame and contribute to the flame stabilization in the outer regions of the flow.  相似文献   

3.
Junction flows are subject to an intense adverse pressure gradient and three-dimensional separation when encountering a wall-mounted obstacle. A dynamically rich horseshoe vortex system is formed in this region. In this study the junction flow at the interaction of a wing and a flat plate is investigated. The numerical modelling is carried out using the three-dimensional large eddy simulation (LES) approach at the Reynolds number Re = 1.15×105 based on the wing’s maximum thickness T and the free stream velocity Uref. The comparison with the experimental results shows that the numerical simulations fairly accurately reproduce the phenomenon under study. The dynamic mode decomposition (DMD) of the resolved flow field is employed to obtain the coherent dynamics of the flow. To clearly demonstrate the oscillation characteristics and the horseshoe vortex structures of junction flow the velocity field in the plane of symmetry is decomposed with eduction of two dominant DMDmodes. These two DMDmodes are reconstituted and developed, together with the mean flow mode to explain the latent dynamics. Mode 1 reveals the merging of the horseshoe vortices and mode 2 is responsible for the process of fission and stretching.  相似文献   

4.
5.
The Proper Orthogonal Decomposition (POD) is used in the present work to study the interactions between different regions of a flow. The standard analysis would select structures that are best correlated with the entire fluctuating velocity field. It is therefore not helpful if one flow region S of interest contains only a small percentage of the total kinetic energy. Using POD modes computed in the sub-domain S only, extended modes are introduced using the method of snapshots. We demonstrate that they provide a decomposition of the velocity field in the whole domain and that the extended mode number p provides the only local contribution to the velocity field correlated with the projection of the velocity field on POD mode p in S. This method is general and can be applied to either experimental or numerical velocity fields. As an example, it is applied to the analysis of an internal turbulent flow in a model engine cylinder with tumble. Data are obtained at a given phase with Particle Image Velocimetry. We focus our analysis on the middle of the intake stroke when the energy containing intake jet rolls up to feed a large vortex structure. Preferred directions of the jet/vortex interaction are clearly identified. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
7.
As an important factor in evaluating the safety of civil infrastructures, predictions of displacement become the basis for determining the decrease of structural performance and the degree of aging in general. It is, however, well known that it is not easy to measure the displacement response of civil infrastructures such as suspension bridges due to a lack of appropriate measurement techniques, despite the importance of measurements in the displacement response. Thus, as an alternative for predicting the displacement response indirectly, the conversion of the measured strain signal obtained using Fiber optic Bragg-Grating (FBG) sensors into the displacement response is suggested. In previous studies on the prediction of displacement response using FBG sensors, static displacement was mainly predicted. A known complication in the use of the measured strain signal to predict dynamic displacement is the fact that the measured strain signal includes higher modes, and that the predicted dynamic displacement can be inherently contaminated by broad-band noises. To overcome such a problem, a mode decomposition technique was used. This is a method that estimates the total displacement response combined with each displacement response about the major mode of the structure and the quasi-static displacement responses. In order to verify the suggested algorithm to predict the displacement responses from FBG strain signals, a model experiment and field tests were executed.  相似文献   

8.
9.
The direct identification of the cohesive law in pure mode I of Pinus pinaster is addressed in this work. The approach couples the double cantilever beam (DCB) test with digital image correlation (DIC). Wooden beam specimens loaded in the radial-longitudinal (RL) fracture propagation system are used. The strain energy release rate in mode I (G I) is uniquely determined from the load–displacement curve by means of the compliance-based beam method (CBBM). This method relies on the concept of equivalent elastic crack length (a eq) and therefore does not require the monitoring of crack propagation during test. DIC measurements are processed with two different purposes. Firstly, the physical evidence of a eq is discussed with regard to actual estimation of the crack length based on post-processing full-field displacement measurements. Secondly, the crack tip opening displacement in mode I (w I) is determined from the displacements near the initial crack tip. The cohesive law in mode I (σ I???w I) is then identified by numerical differentiation of the G I???w I relationship. The methodology and accuracy on this reconstruction are addressed. Moreover, the proposed procedure is validated by finite element analyses including cohesive zone modelling. It is concluded that the proposed data reduction scheme is adequate for assessing the cohesive law in pure mode I of P. pinaster.  相似文献   

10.
Abstract

Interaction of nearly simultaneous buckling modes in the presence of imperfections is studied. The investigation is concerned with axially stiffened cylindrical shells under axial compression. In these structures, two modes are of particular interest, namely an overall long-wave and a local shortwave buckling mode. Numerical results show that in some cases bending of the stringers in the local mode postbuckling solution plays an important role. Exclusion of this effect, as was done in a previous study by Byskov and Hutchinson, may lead to an overestimation of the carrying capacity of the shell. Furthermore, it is found that apparently reasonable approximations to the postbuckling fields associated with both the local and the overall mode, as well as with the overall mode alone, may lead to inexact values of the buckling load.  相似文献   

11.
In this paper the canonical perturbation method, which is widely used in analytical mechanics, is applied to optimal control problems. It is shown that the state and adjoint equations present additional interesting symmetries if the state equations are themselves of the Hamiltonian type, which is frequently the case if a mechanical system is to be controlled. The application of the canonical perturbation method to optimal control problems turns out to be particularly simple, if the optimal control is piecewise constant. Several examples are considered.  相似文献   

12.
Strain fields in 600 grade dual-phase steel V-notch tensile specimens, both with and without a spot weld, were measured after mode I fracture initiation. Starting with the final image of a fully developed crack, a novel reverse digital image correlation (DIC) analysis was used to determine the path that the crack followed at the onset of fracture as well as the crack tip deformation field. This gave the pixel coordinates of grid points on both sides (i.e. fracture surfaces) of the crack path in the undeformed image. Strain fields that develop in the base material regions surrounding the two fracture surfaces were subsequently measured with forward DIC analysis. Steady state values of the crack tip opening displacement (CTOD) and crack tip opening angle (CTOA), which are important fracture parameters, were measured for the base DP600 metal. Notch tip opening displacement (NTOD) and notch tip opening angle were also measured. It was found that steady state values of the CTOD and CTOA are reached within 2 mm or so of crack growth following completion of the flat-to-slant transition of the fracture surface and stabilization of the crack tunneling effect.  相似文献   

13.
The aim of the paper is to characterize transformations that preserve the potential structure of a relationship between dual variables. The first step consists in deriving a geometric definition of the condition for the existence of a potential. Having at hand this formulation, it becomes clear that the canonical similitudes represents the class of transformations that preserves the potential form of a relationship. Next, we derive the conditions under which canonical similitudes preserve the convexity of the potential or change it into concavity. This new class of transformations can be viewed as a generalization of the Legendre-Fenchel transformation. These concepts are applied to the Hooke constitutive relationship.  相似文献   

14.
Hopf bifurcation of a unified chaotic system – the generalized Lorenz canonical form (GLCF) – is investigated. Based on rigorous mathematical analysis and symbolic computations, some conditions for stability and direction of the periodic obits from the Hopf bifurcation are derived.  相似文献   

15.
二层流体中波动问题的Hamilton正则方程   总被引:1,自引:0,他引:1  
马晨明  乐嘉春 《力学季刊》2001,22(3):374-377
研究了两种常密度不可压缩理想流体组成的垂直分层的二流体系统的无旋等熵流动,考虑了上层流体与空气及两层流体间的表面张力。流动区域在水平方向无限伸展,上层流体有限深度,下层流体无限深。利用自由面及分界面相对于静止时平衡位置的偏移以及两层流体的速度势构造了Hamilton函数。为导出Hamilton正则方程引用了Euler描述下的流体运动的变分原理。自由面的位移是Hamilton意义下的正则变量,其对偶变量是上层流体在自由面上取值的速度势与密度的乘积。另一个正则变量是分界面的位移,其对偶变量是下层流体的密度与下层流体速度势在分界面上所取值的乘积减去上层流体密度与上层流体速度势在分界面上所取值的相应乘积。导出的Hamilton结构对分析分层流动中表面波与内波的相互作用是重要的。  相似文献   

16.
The functional in the principle of minimum potential energy of layered anisotropic shells with a nonlinear relationship between strains and displacements is transformed into a canonical integral that coincides with the functional in the Reissner principle. Partial forms of the functional are derived for problem formulations where the dimension can be reduced with respect to one of the coordinates. The canonical system of equations is linearized and then normalized. The boundary-value problem is solved by the numerical discrete-orthogonalization method. An anisotropic spherical shell under external compression is analyzed for stability as an example  相似文献   

17.
The process of dissociation of gas hydrates coexisting with gas and ice in low-temperature reservoirs is considered. A qualitative analysis of the phase transitions which enables possible configurations of the solutions to be predicted is carried out on the basis of the phase diagram for methane hydrate. Mathematical models of hydrate decomposition in reservoirs which take into account the formation of an extended dissociation zone and the presence of two phase transition fronts are proposed. Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 1, pp. 101–111, January–February, 1998. The work was carried out with financial support from the Russian Foundation for Fundamental Research (project No. 96-01-00521).  相似文献   

18.
The mass-spring model of electrostatically actuated microelectromechanical systems (MEMS) or nanoelectromechanical systems (NEMS) is pervasive in the MEMS and NEMS literature. Nonetheless a rigorous analysis of this model does not exist. Here periodic solutions of the canonical mass-spring model in the viscosity dominated time harmonic regime are studied. Ranges of the dimensionless average applied voltage and dimensionless frequency of voltage variation are delineated such that periodic solutions exist. Parameter ranges where such solutions fail to exist are identified; this provides a dynamic analog to the static “pull-in” instability well known to MEMS/NEMS researchers.   相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号