首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A theoretical study has been undertaken to elucidate the three‐dimensional pattern formation during holographic polymer‐dispersed liquid crystal fabrication employing various optical wave interference techniques. Initially miscible mixtures of nematic liquid crystal and reactive multifunctional monomer with a photosensitive initiator were exposed to geometrically arranged interfering beams of light, producing a spatially dependent intensity distribution within the sample. To mimic the spatio‐temporal evolution of periodic photonic structures in three dimensions, the time‐dependent Ginzburg–Landau Model C equations, coupled with spatially variant reaction rate equations, have been solved numerically incorporating the local free energy densities pertaining to isotropic mixing, nematic ordering, and network elasticity. The simulated results reveal some key observations during the formation of electrically switchable photonic crystals with few defects. It appears that the network elasticity term exerts profound effects on resultant structures, indicating that photonic crystals with fewer point defects may be fabricated in shorter times. The simulated results are in good qualitative agreement with reported experimental observations in respect of emerged patterns, length and time scales.  相似文献   

2.
Computational modeling of texture formation in coupled phase separation-phase ordering processes in polymer/liquid crystal mixtures is performed using a unified model based on the nematic tensor order parameter and gradient orientation elasticity. The computational methods are able to resolve defect nucleation, defect-defect interactions, and defect-particle interactions, as well as global and local morphological features in the concentration and order parameter spatiotemporal behavior. Biphasic structures corresponding to polymer dispersed liquid crystals (PDLCs), crystalline filled nematic (CFNs), and random filled nematics (RFNs) are captured and analyzed using liquid crystal defect physics and structure factors. Under spinodal decomposition due to concentration fluctuations, the PDLC structure emerges, and the nucleation and repulsive interaction of defects within nematic droplets leads to bipolar nematic droplets. Under spinodal decomposition due to ordering fluctuations, the CFNs structure emerges, and the stable polymer droplet crystal is pinned by a lattice of topological defects. For intermediate cases, where the mixture is unstable to both concentration and nematic order fluctuations, the RFN structure emerges, and polymer droplets and fibrils are pinned by a defect network, whose density increases with the curvature of the polymer-liquid crystal interface. The simulations provide an information of the role of topological defects on phase separation-phase ordering processes in polymer-liquid crystal mixtures.  相似文献   

3.
Liquid-crystal elastomers together with nematic liquid crystals have been used as inverse opal materials to fabricate thermoresponsive photonic crystal directly. In the vicinity of the phase-transition point of the mixture, the photonic band gaps of such inverse opal films exhibited a strong temperature dependence. As the molar ratio of liquid-crystal elastomers and nematic liquid crystals changed, the character of their PBGs also changed with increasing temperature. Such a temperature-tuning effect in the photonic band gap should be of great interest in thermal switches and thermal sensors.  相似文献   

4.
Liquid crystal elastomers can be macroscopically ordered with respect to the director by applying a mechanical field similar to electric/magnetic field effects of low molar mass liquid crystals. Introducing network anisotropy a priori by the synthesis, uniformly aligned nematic or smectic elastomers are available without external mechanical field. These LSCE's combine optical properties of single crystals with entropy elasticity of elastomers. Due to uniform director orientation without defects, the LSCE's exhibit excellent transparency which makes them applicable for optical elements. Non-linear optical properties can be easily optimized by attaching suitable I.c.-moieties to the polymer network. On the other hand, due to the rubber elasticity of the LSCE's, electromechanical effects can be observed, e. g. piezoelectricity of chiral smectic C-LSCE's.  相似文献   

5.
ABSTRACT

We demonstrate nematic and cholesteric liquid crystal (LC) gyroids and show their photonic properties as photonic crystals by using numerical modelling. The LC gyroids are designed as composite optical materials, where we take one labyrinth of passages to be a solid dielectric, whereas the other (complementing) labyrinth of passages is taken to be filled by chiral or achiral nematic LC, with the intermediate gyroid surface imposing homeotropic (perpendicular) surface anchoring. The nematic inside the gyroid matrix is shown to exhibit a variety of possible orientational profiles which are characterised by complex networks of topological defects – from ordered, semi-ordered, to completely disordered. The diversity of possible nematic states is shown to lead to a rich structure of photonic bands, which can be tuned by the LC volume fraction and the cholesteric pitch, including control over full – direct and indirect – band gaps.  相似文献   

6.
In this paper we give an overview of experiments that provided an insight into the nature of forces between surfaces and objects in a nematic liquid crystal. These forces, also called ‘structural forces’, are the consequence of the long-range orientational order and orientational elasticity of nematic liquid crystals. Owing to their fundamental as well as technological importance, forces between objects in liquid crystals have been a subject of growing interest during the last decade. Experimental observations and studies of structural forces are described from nanoscale interfacial forces, measured by an atomic force microscope, to the micro-scale forces between colloidal particles in nematics, studied by laser tweezers and optical video microscopy.  相似文献   

7.
利用Gay-Berne模型, 结合分子动力学模拟方法, 研究了粒子长径比对椭球粒子液晶行为的影响, 考察了粒子长径比对向列相和近晶相的影响. 结果表明, 长径比相对较小的粒子有利于向列相的形成, 而长径比相对较大的粒子更有利于近晶相的形成. 分析了近晶相和向列相形成的动力学过程.  相似文献   

8.
蛋白石及反蛋白石結構光子晶體   总被引:2,自引:0,他引:2  
王振领  林君 《化学通报》2004,67(12):876-882
光子晶体是由不同介电常数的材料构成的一种空间周期性结构,它能够在特定方向上禁阻、控制和操纵光子的运动。目前,已制备的光子晶体具有几种不同的结构类型,本文主要综述了蛋白石、反蛋白石结构光子晶体的制备方法及其光子带隙的影响因素。  相似文献   

9.
This contribution is a personal view of the rapidly developing subfield of nematic colloids, with an emphasis on possible applications of these materials in future photonic microdevices. A brief overview of the most important phenomena, observed in the past decade in nematic colloids is given. It is explained why integrated photonics based on microstructured liquid crystals is feasible and future challenges towards the realisation of integrated liquid crystal microphotonics are discussed.  相似文献   

10.
We introduce a method to manipulate and organize ferromagnetic nanowires using the elastic forces imposed on nanowires suspended in nematic liquid crystals via patterned variations in the nematic director. As a test case for the technique, we investigate nematic environments consisting of stripes of alternating director orientations formed by lithographically patterned substrates. Nanowires oriented by small external magnetic fields are driven by the liquid crystal to specific locations of the pattern. The observed forces on the nanowires agree with calculations based on nematic elasticity.  相似文献   

11.
A high surface area-to-volume ratio in microchannels increases the importance of surface interactions within them. In layered liquids, such as smectic liquid crystals, surface interactions play an important role in the formation of defect textures. We use 8CB liquid crystal, which is in the smectic-A phase at room temperature, as a model layered liquid. PDMS surfaces can be tuned to be hydrophilic or hydrophobic, and due to the nature of liquid crystalline molecules, we show that this results in planar or homeotropic anchoring conditions, respectively. In a confined system, contrary to the bulk, generated defects cannot grow freely. In the present work, we show that the confinement offered by PDMS microchannels along with the capability of creating mixed anchoring conditions within them results in the formation of particular ordered defect textures through increased surface interactions in smectic-A liquid crystals. Our observations imply that microscale confinement is useful for controlling the size, size distribution, and packing structure of microscale defect structures within these materials. In addition, we show that by placing a droplet of smectic-A liquid crystal on a PDMS surface containing microscale parallel cracks, ordered focal conic defects form between two adjacent cracks. The distance between two adjacent cracks dictates the size of the defects. These observations could lead to useful ideas for exploring new technologies for flexible optical devices or displays that utilize smectic-A liquid crystals.  相似文献   

12.
13.
The synthesis and characterization of several new series of monosubstituted ferrocenyl-containing liquid crystals has been achieved. The results indicate that a terminal ferrocenyl group can promote stabilization of a nematic liquid crystal state. At least three phenyl rings are required in the molecular core in order to provide nematic properties and addition of a fourth ring substantially enhances it. Bulky lateral substituents or the introduction of linker groups that introduce kinks inhibit liquid crystal phase formation. Short highly polarising terminal groups or terminal groups that support hydrogen bonding support liquid crystal behaviour.  相似文献   

14.
We report alignment of anisotropic amphiphilic dye molecules within oblate and prolate anisotropic micelles and lamellae, the basic building blocks of surfactant-based lyotropic liquid crystals. Absorption and fluorescence transition dipole moments of these dye molecules orient either parallel or orthogonal to the liquid crystal director. This alignment enables three-dimensional visualization of director structures and defects in different lyotropic mesophases by means of fluorescence confocal polarizing microscopy and two-photon excitation fluorescence polarizing microscopy. The studied structures include nematic tactoids, Schlieren texture with disclinations in the calamitic nematic phase, oily streaks in the lamellar phase, developable domains in the columnar hexagonal phase, and various types of line defects in the discotic cholesteric phase. Orientational three-dimensional imaging of structures in the lyotropic cholesterics reveals large Burgers vector dislocations in cholesteric layering with singular disclinations in the dislocation cores that are not common for their thermotropic counterparts.  相似文献   

15.
Ž. Kos  M. Ravnik 《Liquid crystals》2017,44(12-13):2161-2171
ABSTRACT

We explore equilibrium structures and flow-driven deformations of nematic liquid crystals confined to 3D junctions of cylindrical micropores with homeotropic surface anchoring. The topological state of the nematic ordering field in such basic unit of porous networks is controlled by nematic orientation profiles in individual pores, anchoring frustration along the edges of joining pores and coupling to the material flow field. We numerically investigate formation of the flow-aligned configurations in single cylindrical pores and pore junctions. Depending on the arrangement of inlet and outlet flows in the junction, we demonstrate existence of numerous stationary nematic configurations, characterised by specific bulk defects and surface disclinations along joining edges. Observed bulk defects are nonsingular escaped structures, disclinations in the form of loops or disclination lines pinned to the joining edges of the pores. Furthermore, we show examples of defect dynamics during the flow-induced topological transformations.  相似文献   

16.
The structural transition in micrometer‐sized liquid crystal bubbles (LCBs) derived from rod‐like cellulose nanocrystals (CNCs) was studied. The CNC‐based LCBs were suspended in nematic or chiral nematic liquid‐crystalline CNCs, which generated topological defects and distinct birefringent textures around them. The ordering and structure of the LCBs shifted from a nematic to chiral nematic arrangement as water evaporation progressed. These packed LCBs exhibited a specific photonic cross‐communication property that is due to a combination of Bragg reflection and bubble curvature and size.  相似文献   

17.
《Liquid crystals》1997,23(1):93-111
This paper presents a non-linear numerical and bifurcation analysis of pattern formation phenomena in a discotic nematic liquid crystal confined to annular cylindrical cavities and subjected to extensional deformations. The results are of direct relevance to understanding the industrial melt spinning of mesophase carbon fibres, using discotic nematic liquid crystals precursor materials. Three types of orientation patterns are identified in this study: spatially constant (radial), monotonic (pinwheel), and oscillatory (zigzag). Numerical and closed form analytical results predicting continuous transformations between the radial, pinwheel, zigzag radial orientation modes are presented. The bifurcation analysis provides a direct characterization of the parametric dependence and the transitions between these three basic patterns, and provides a complete understanding of the multistability phenomena that is present in the oscillatory orientation patterns. In general it is found that small fibres of nearly elastically isotropic discotic nematic liquid crystals tend to adopt the classical ideal radial texture, while larger fibres with anisotropic elastic moduli tend to yield the zigzag texture. Fixed arbitrary surface orientation of intermediate size and anisotropy tend to adopt the pinwheel texture. The theoretical results are able to explain the main features and mechanisms that lead to the commonly observed cross-section textures of industrially spun mesophase carbon fibres.  相似文献   

18.
The Gibbs-Duhem equation for interfaces between nematic liquid crystals and isotropic fluids is formulated and shown to be a generic equation for soft anisotropic surfaces. The one-to-one correspondence between the nematic and crystalline surface Gibbs-Duhem equations is established. Consistency between the surface Gibbs-Duhem equation and the classical equations of interfacial nematostatics is shown. Using a phase space that takes into account thermodynamics, liquid crystalline order, and geometric variables, the generalized nematic surface Gibbs-Duhem equation reveals the presence of couplings between shape, adsorption, temperature, and average molecular orientation. Merging the thermodynamic analysis with nematostatics results in a model for morphactancy, that is, adsorption-induced interfacial shape selection. The specific roles of gradient bulk Frank elasticity, interfacial tension, and anchoring energy are elucidated by analyzing particular paths in the thermodynamic-geometric phase space.  相似文献   

19.
We report a study of the interactions of proteins with monolayers of phospholipids (D/L-alpha-dipalmitoyl phosphatidylcholine and L-alpha-dilauroyl phosphatidylcholine) spontaneously assembled at an interface between an aqueous phase and a 20-microm-thick film of a nematic liquid crystal (4'-pentyl-4-cyanobiphenyl). Because the orientation of the liquid crystal is coupled to the organization of the lipids, specific interactions between phospholipase A2 and the lipids (binding and/or hydrolysis) that lead to reorganization of the lipids are optically reported (using polarized light) as dynamic orientational transitions in the liquid crystal. In contrast, nonspecific interactions between proteins such as albumin, lysozyme, and cytochrome-c and the lipid-laden interface of the liquid crystal are not reported as orientational transitions in the liquid crystals. Concurrent epifluorescence and polarized light imaging of labeled lipids and proteins at the aqueous-liquid crystal interface demonstrate that spatially patterned orientations of the liquid crystals observed during specific binding of phospholipase A2 to the interface, as well as during the subsequent hydrolysis of lipids by phospholipase A2, reflect the lateral organization (micrometer-sized domains) of the proteins and lipids, respectively, at the aqueous-liquid crystal interface.  相似文献   

20.
A liquid crystalline gelator containing the azobenzene chromophore was synthesized for the first time; it was used to form self- assembled network in nematic liquid crystals resulting in liquid crystal gels with distinct features.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号