首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents the necessary and sufficient optimality conditions for the Euler?CLagrange fractional equations of fractional variational problems with determining in which spaces the functional must exist where the functional contains right and left fractional derivatives in the Riemann?CLiouville sense and the upper bound of integration less than the upper bound of the interval of the fractional derivative. In order to illustrate our results, one example is presented.  相似文献   

2.
A type of quasilinear Schrodinger equations in two space dimensions which describe attractive Bose-Einstein condensates in physics is discussed. By establishing the property of the equation and applying the energy method, the blowup of solutions to the equation are proved under certain conditions. At the same time, by the variational method, a sutficient condition of global existence which is related to the ground state of a classical elliptic equation is obtained.  相似文献   

3.
Variational methods are used to study the nonlinear SchrSdinger-Poisson type equations which model the electromagnetic wave propagating in the plasma in physics. By analyzing the Hamiltonian property to construct a constrained variational problem, the existence of the ground state of the system is obtained. Furthermore, it is shown that the ground state is orbitally stable.  相似文献   

4.
In the present paper, the longitudinal dynamic flight stability properties of two model insects are predicted by an approximate theory and computed by numerical sim- ulation. The theory is based on the averaged model (which assumes that the frequency of wingbeat is sufficiently higher than that of the body motion, so that the flapping wings' degrees of freedom relative to the body can be dropped and the wings can be replaced by wingbeat-cycle-average forces and moments); the simulation solves the complete equations of motion coupled with the Navier-Stokes equations. Comparison between the theory and the simulation provides a test to the validity of the assumptions in the theory. One of the insects is a model dronefly which has relatively high wingbeat frequency (164 Hz) and the other is a model hawkmoth which has relatively low wingbeat frequency (26 Hz). The results show that the averaged model is valid for the hawkmoth as well as for the dronefly. Since the wingbeat frequency of the hawkmoth is relatively low (the characteristic times of the natural modes of motion of the body divided by wingbeat period are relatively large) compared with many other insects, that the theory based on the averaged model is valid for the hawkmoth means that it could be valid for many insects.  相似文献   

5.
The topological characteristics for the basic system of equations of atmo- spheric motion were analyzed with the help of method provided by stratification theory.It was proved that in the local rectangular coordinate system the basic system of equations of atmospheric motion is stable in infinitely differentiable function class.In the sense of local solution,the necessary and sufficient conditions by which the typical problem for determining solution is well posed were also given.Such problems as something about“speculating future from past”in atmospheric dynamics and how to amend the condi- tions for determining solution as well as the choice of underlying surface when involving the practical application were further discussed.It is also pointed out that under the usual conditions,three motion equations and continuity equation in the basic system of equations determine entirely the property of this system of equations.  相似文献   

6.
A number of hypotheses on the mechanical behavior of shape memory alloys such as titanium nickelide in twostep (martensitic and rhombohedral) phase transformations are formulated on the basis of experimental data. A system of relations linking stresses, strains, temperature, and phase composition in such transitions is proposed.  相似文献   

7.
A type of quasilinear Schrdinger equations in two space dimensions which describe attractive Bose-Einstein condensates in physics is discussed.By establishing the property of the equation and applying the energy method,the blowup of solutions to the equation are proved under certain conditions.At the same time,by the variational method,a sufficient condition of global existence which is related to the ground state of a classical elliptic equation is obtained.  相似文献   

8.
A gradient representation and a fractional gradient representation of the Poincaré equations are studied. Firstly, the condition presented here for the Poincaré equation can be considered as a gradient system. Then, a condition under which the Poincaré equation can be considered as a fractional gradient system is obtained. Finally, two examples are given to illustrate applications of the result.  相似文献   

9.
We obtain theorems of Phragmén-Lindelöf type for the following classes of elliptic partial differential inequalities in an arbitrary unbounded domain \(\Omega \subseteq \mathbb{R}^n ,{\text{ }}n \geqq 2\) (A.1) $$\sum\limits_{i,j = 1}^n {\frac{\partial }{{\partial x_i }}\left( {a_{ij} 9(x)\frac{{\partial u}}{{\partial xj}}} \right)} + \sum\limits_{i = 1}^n {b_i (x,{\text{ }}u,{\text{ }}\nabla u)\frac{\partial }{{\partial x_i }}} \geqq f(x,{\text{ }}u)$$ where a ij are elliptic in Ω and b i ε L(Ω) and where also a ij are uniformly elliptic and Holder continuous at infinity and b i = O(|x|+1) as x → ∞; (A.2) $${\text{(A}}{\text{.2) }}\sum\limits_{i,j = 1}^n {a_{ij} (x,{\text{ }}u,{\text{ }}\nabla u)\frac{{\partial ^2 u}}{{\partial x_i \partial x_j }}} + \sum\limits_{i = 1}^n {b_i (x,{\text{ }}u,{\text{ }}\nabla u)\frac{\partial }{{\partial x_i }}} \geqq f(x,{\text{ }}u)$$ where aijare uniformly elliptic in Ω and b iε L(Ω); and finally (A.3) $${\text{div(}}\nabla u^p \nabla u {\text{)}} \geqq f{\text{(}}u{\text{), }}p > - 1,$$ where the operator on the left is the so-called P-Laplacian. The function f is always supposed positive and continuous. Moreover u is assumed throughout to be in the natural weak Sobolev space corresponding to the particular inequality under consideration, namely u ε. W loc 1,2 (Ω) ∩L loc t8 (Ω) for (A.I), W loc 2,n(Ω) for (A.2), and W loc 1,p+2 (Ω) ∩ L loc t8 (Ω) for (A.3). As a consequence of our results we obtain both non-existence and Liouville theorems, as well as existence theorems for (A.1).  相似文献   

10.
A probabilistic approach to systems of partial differential equations is developed on the basis of the well-known Feynman–Kac and Bismut formulas providing explicit probabilistic representations of the solutions and of their derivatives of scalar differential equations. Some numerical examples are also included. In particular the Lamé equations of elastostatics are solved and the results are compared with some known exact analytic solutions to demonstrate the efficiency of the approach.  相似文献   

11.
We discussed a class of p-Laplacian boundary problems on a bounded smooth domain,the nonlinearity is odd symmetric and limit subcritical growing at infinite.A sequence of critical values of the variational functional was constructed after the general- ized Palais-Smale condition was verified.We obtain that the problem possesses infinitely many solutions and corresponding energy levels of the functional pass to positive infinite. The result is a generalization of a similar problem in the case of subcritical.  相似文献   

12.
This paper reports a new set of model equations for Computational Hydro Acoustics (CHA). The governing equations include the continuity and the momentum equations. The definition of bulk modulus is used to relate density with pressure. For 3D flow fields, there are four equations with density and velocity components as the unknowns. The inviscid equations are proved to be hyperbolic because an arbitrary linear combination of the three Jacobian matrices is diagonalizable and has a real spectrum. The left and right eigenvector matrices are explicitly derived. Moreover, an analytical form of the Riemann invariants are derived. The model equations are indeed suitable for modeling wave propagation in low-speed, nearly incompressible air and water flows. To demonstrate the capability of the new formulation, we use the CESE method to solve the 2D equations for aeolian tones generated by air flows passing a circular cylinder at Re = 89,000, 46,000, and 22,000. Numerical results compare well with previously published data. By simply changing the value of the bulk modulus, the same code is then used to calculate three cases of water flows passing a cylinder at Re = 89,000, 67,000, and 44,000.  相似文献   

13.
For scalar equations
  相似文献   

14.
A boundary integral method with radial basis function approximation is proposed for numerically solving an important class of boundary value problems governed by a system of thermoelastostatic equations with variable coe?cients. The equations describe the thermoelastic behaviors of nonhomogeneous anisotropic materials with properties that vary smoothly from point to point in space. No restriction is imposed on the spatial variations of the thermoelastic coe?cients as long as all the requirements of the laws of physics are satis?ed. To check the validity and accuracy of the proposed numerical method, some speci?c test problems with known solutions are solved.  相似文献   

15.
《Comptes Rendus Mecanique》2014,342(10-11):636-646
In this article, we introduce numerical schemes for the Vlasov–Maxwell equations relying on different kinds of grid-based Vlasov solvers, as opposite to PIC schemes, which enforce a discrete continuity equation. The idea underlying these schemes relies on a time-splitting scheme between configuration space and velocity space for the Vlasov equation and on the computation of the discrete current in a form that is compatible with the discrete Maxwell solver.  相似文献   

16.
Nonlinear Schr?dinger-type equations can model the nonlinear waves in fluids, plasmas, nonlinear optics and atmosphere. In this paper, integrable coupled nonlinear Schr?dinger-type equations are investigated. With the aid of symbolic computation, the equations are transformed into their bilinear forms, by virtue of which the multi-soliton solutions are derived. Soliton interactions are analyzed, the elastic interactions are seen, while the dark, anti-dark, M- and W-shape solitons are exhibited with some parameters selected. The propagating solitons can preserve their properties after the interaction, and the profiles of them depend on the corresponding dispersion relations. The amplitudes, velocities of the solitons are found to be influenced by the coefficient of the original equations, which is detailed in the paper.  相似文献   

17.
Some conclusions about the smooth function classes stability for the basic system of equations of atmospheric motion and instability for Navier-Stokes equation are summarized. On the basis of this, by taking the basic system of equations of atmospheric motion via Boussinesq approximation as example to explain in detail that the instability about some simplified models of the basic system of equations for atmospheric motion is caused by the instability of Navier-Stokes equation, thereby, a principle to guarantee the stability of simplified equation is drawn in simplifying the basic system of equations.  相似文献   

18.
We prove that any bounded solution (u, u 1) ofu u +du t –u+f(u)=0,u=u(x, t), xN,N3, converges to a fixed stationary state provided its initial energy is appropriately small. The theory of concentrated compactness is used in combination with some recent results concerning the uniqueness of the so-called ground-state solution of the corresponding stationary problem.  相似文献   

19.
The paper studies unsteady Navier–Stokes equations with two space variables. It shows that the non-linear fourth-order equation for the stream function with three independent variables admits functional separable solutions described by a system of three partial differential equations with two independent variables. The system is found to have a number of exact solutions, which generate new classes of exact solutions to the Navier–Stokes equations. All these solutions involve two or more arbitrary functions of a single argument as well as a few free parameters. Many of the solutions are expressed in terms of elementary functions, provided that the arbitrary functions are also elementary; such solutions, having relatively simple form and presenting significant arbitrariness, can be especially useful for solving certain model problems and testing numerical and approximate analytical hydrodynamic methods. The paper uses the obtained results to describe some model unsteady flows of viscous incompressible fluids, including flows through a strip with permeable walls, flows through a strip with extrusion at the boundaries, flows onto a shrinking plane, and others. Some blow-up modes, which correspond to singular solutions, are discussed.  相似文献   

20.
The initial boundary value problem for the two-dimensional primitive equations of large scale oceanic motion in geophysics is considered. It is assumed that the depth of the ocean is a positive constant. Firstly, if the initial data are square integrable, then by Fadeo-Galerkin method, the existence of the global weak solutions for the problem is obtained. Secondly, if the initial data and their vertical derivatives are all square integrable, then by Faedo-Galerkin method and anisotropic inequalities, the existerce and uniqueness of the global weakly strong solution for the above initial boundary problem are obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号