首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have investigated the ordered phases of the perylene derivatives perylene-3,4,9,10-tetracarboxylic-3,4,9,10-dianhydride (PTCDA) and the imide analogue PTCDI on the Ag-Si(111)square root(3) x square root(3)R30 degrees surface using scanning tunneling microscopy. We find that PTCDA forms square, hexagonal, and herringbone phases, which coexist on the surface. The existence of a square phase on a hexagonal surface is of particular interest and is a result of a near commensurability between the molecular dimensions and the surface lattice. Contrast variations across the square islands arise from PTCDA molecules binding to different sites on the surface. PTCDI on Ag-Si(111)square root(3) x square root(3)R30 degrees forms extended rows, as well as two-dimensional islands, both of which are stabilized by hydrogen bonding mediated by the presence of imide groups. We present models for the molecular arrangements in all these phases and highlight the role of hydrogen bonding in controlling this order.  相似文献   

2.
A stable hydrogen-bonding junction is formed between 3,4,9,10-perylene-3,4,9,10-tetracarboxylic-dianhydride (PTCDA) and 1,3,5-triazine-2,4,6-triamine (melamine). This bimolecular system was studied on the Ag-Si(111) square root 3 x square root R 30 degrees surface at sub-monolayer coverage, and two distinct phases are observed. A hexagonal lattice is formed that is stabilized by hydrogen bonding between PTCDA and melamine. This phase, in which melamine acts as a 3-fold vertex, is a close analogue to the 3,4,9,10-perylene-3,4,9,10-tetracarboxylic-diimide-melamine network reported recently. To our knowledge this hydrogen-bonding junction has not been previously observed and might not be expected due to lone pair repulsion. However we confirm that this combination is stable using ab initio methods. In the second intermixed phase parallel rows of PTCDA molecules coexist with an array of melamine molecules, and we propose a model for this structure.  相似文献   

3.
For the purpose of developing organic photovoltaic devices with good performance characteristics,we have fabricated twodevices using 4T-CHO,5T-CHO and PTCDA.The ITO/4T-CHO/PTCDA/Al device has a V_oc of 2.45 V and photoelectricconversion efficiency of 2.76%.The ITO/5T-CHO/PTCDA/Al device has a V_oc of 2.1 3V and photoelectric conversion efficiency of2.90%.The two devices have higher Voc(2.45 and 2.13 V).It is possible that intermolecular hydrogen bonding between-CHOgroup of nT-CHO and carboxylic dianhydride of PTCDA contribute to enhance the efficiency by promoting interfacial electrontransfer and eliminating the subconducting band trap sites.  相似文献   

4.
For the purpose of developing flexible organic photovoltaic devices, we have fabricated two flexible devices using 5-formyl- 2,2′:5′,2″:5″,2′″-quaterthiophene (4T-CHO), 5-formyl-2,2′:5′, 2″:5″,2′″:5′″,2″″-quinquethiophene (5T-CHO) and 3,4,9,10-perylenetertracarboxylic dianhydride (PTCDA). The PET-ITO/4T-CHO/PTCDA/A1 device has an open circuit voltage (Voc) of 1.56 V, photoelectric conversion efficiency of 0.77%. The PET-ITO/5T-CHO/PTCDA/A1 device has a Voc of 1.70 V, photoelectric conversion efficiency of 0.84%. The two flexible devices have high Voc (1.56 and 1.70 V). It is possible that intermolecular hydrogen bonding between -CHO group of nT-CHO and carboxylic dianhydride of PTCDA contributes to enhancing the efficiency by promoting interfacial electron transfer and eliminating the subconducting band trap sites.  相似文献   

5.
Self-assembly of the binary molecular system of pentacene and 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) on Ag(111) has been investigated by low-temperature scanning tunneling microscopy, molecular dynamics (MD), and density functional theory (DFT) calculations. Well-ordered two-dimensional (2D) pentacene:PTCDA supramolecular chiral networks are observed to form on Ag(111). The 2D chiral network formation is controlled by the strong interfacial interaction between adsorbed molecules and the underlying Ag(111), as revealed by MD and DFT calculations. The registry effect locks the adsorbed pentacene and PTCDA molecules into specific adsorption sites due to the corrugation of the potential energy surface. The 2D supramolecular networks are further constrained through the directional CO...H-C multiple intermolecular hydrogen bonding between the anhydride groups of PTCDA and the peripheral aromatic hydrogen atoms of the neighboring pentacene molecules.  相似文献   

6.
Chuanyu Jiang  Wenji Deng 《合成通讯》2013,43(13):2360-2369
For the purpose of developing novel photovoltaic materials, 5,5″-biformyl-2,2′:5′,2″-terthiophene (OHC-3T-CHO) and 5,5″″-biformyl-2,2′:5′,2″:5″,2″′:5″′,2″″-q-uinquethiophene (OHC-5T-CHO) were synthesized. The photovoltaic properties of OHC-3T-CHO and OHC-5T-CHO were studied. We have fabricated two flexible organic photovoltaic devices using OHC-3T-CHO, OHC-5T-CHO, and 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA). The PET-ITO (indium tin oxides coated with polyethylene terephthalate)/OHC-3T-CHO/PTCDA/Al device has an open circuit voltage (V oc ) of 1.12 V, and photoelectric conversion efficiency (PCE) of 1.00%, whereas the PET-ITO/OHC-5T-CHO/PTCDA/Al device has a V oc of 1.78 V and PCE of 1.08%. Both devices have high V oc (1.12 V and 1.78 V). It is possible that intermolecular hydrogen bonding between the –CHO group of OHC-nT-CHO and the carboxylic dianhydride of PTCDA enhanced the efficiency by promoting forward interfacial electron transfer.  相似文献   

7.
The electronic excitations induced with tunneling electrons into adlayers of 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) on Ag(111) have been investigated by in situ fluorescence spectroscopy in scanning tunneling microscopy (STM). A minute area of the surface is excited by an electron tunneling process in STM. Fluorescence spectra strongly depend on the coverage of PTCDA on Ag(111). The adsorption of the first PTCDA layer quenches the intrinsic surface plasmon originated from the clean Ag(111). When the second layer is formed, fluorescence spectra are dominated by the signals from PTCDA, which are interpreted as the radiative decay from the manifold of first singlet excited state (S(1)) of adsorbed PTCDA. The fluorescence of PTCDA is independent of the bias polarity. In addition, the fluorescence excitation spectrum agrees with that by optical excitation. Both results indicate that S(1) is directly excited by the inelastic impact scattering of electrons tunneling within the PTCDA adlayer.  相似文献   

8.
We demonstrate for the first time that hydronium ions can be reversibly stored in an electrode of crystalline 3,4,9,10‐perylenetetracarboxylic dianhydride (PTCDA). PTCDA exhibits a capacity of 85 mAh g−1 at 1 A g−1 after an initial conditioning process. Ex situ X‐ray diffraction revealed reversible and significant structure dilation upon reduction of PTCDA in an acidic electrolyte, which can only be ascribed to hydronium‐ion intercalation. The lattice expansion upon hydronium storage was theoretically explored by first‐principles density functional theory (DFT) calculations, which confirmed the hydronium storage in PTCDA.  相似文献   

9.
The recombination kinetics of photogenerated charge carriers in perylene-3, 4, 9, 10-tetracarboxylic dianhydride (PTCDA) and copper phthalocyanine (CuPc) thin films grown by organic molecular beam deposition have been studied using transient absorption spectroscopy. Optical excitation is observed to generate long-lived polaron states, which exhibit power law recombination dynamics on time scales from microseconds to milliseconds. Studies as a function of excitation density and temperature, and comparison between heterostructures and PTCDA single layers, all indicate that this power law behavior results from trapping of PTCDA- polarons in localized states, with an estimated trap state density of approximately 6 x 10(17) polarons cm(-3). This recombination behavior is found to be remarkably similar to that previously observed for polymer/fullerene blends, suggesting that it may be generic to a range of semiconducting materials.  相似文献   

10.
In order to clarify the doping behavior of different alkali metals in perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA), Fourier transform infrared spectra of PTCDA thin films doped with sodium, potassium, and cesium were measured and compared. Furthermore the vibrational properties were calculated using density-functional theory and these calculated vibrational frequencies were assigned to the experimental IR modes of the thin films.  相似文献   

11.
For the diamino-bipyridine based C(3)-symmetrical disk molecule, TAB, (sub)picosecond fluorescence transients have been observed by means of femtosecond fluorescence upconversion and picosecond time-correlated photon counting techniques. The dodecyl peripheral side chains of the synthetic compound are large enough to allow, in apolar solvents, self-assembling of the discotic molecules to helical aggregates. In polar solvents, the hydrogen bonding and pi-pi interactions pertaining to the chiral aggregation are compensated by solvation and self-assembling of the disklike molecules is disrupted. For comparison, time-resolved fluorescence measurements have been performed for the subgroup molecule, DAC, which is the (asymmetric) building block for TAB. It is concluded that, after pulsed photoexcitation, TAB and DAC exhibit excited-state intramolecular double proton transfer (ESIDPT) with a typical time of approximately 200-300 fs, irrespective of the degree of aggregation. Picosecond components in the fluorescence of TAB and DAC, ranging from 3 to 25 ps, are representative of vibrational cooling effects in the excited product state. Only aggregated TAB shows a rapid ( approximately 1 ps) decay of its fluorescence anisotropy. This component is attributed to excited-state energy transfer within the aggregate. Finally, the excited-state lifetime of TAB in the aggregated form is found to be an order of magnitude longer than that for TAB in its nonaggregated form. It is inferred that aggregation diminishes the influence of low-frequency twisting motions in the radiationless decay of the excited state.  相似文献   

12.
Charge transfer dynamics across the lying-down 3,4,9,10-perylene-tetracarboxylic-dianhydride (PTCDA) organic semiconductor molecules on Au(111) interface has been investigated using the core-hole clock implementation of resonant photoemission spectroscopy. It is found that the charge transfer time scale at the PTCDA∕Au(111) interface is much larger than the C 1s core-hole lifetime of 6 fs, indicating weak electronic coupling between PTCDA and the gold substrate due to the absence of chemical reaction and∕or bonding.  相似文献   

13.
Recent efforts to understand the interaction of large aromatic molecules with metal surfaces are discussed. We focus exclusively on work involving the model molecule 3,4,9,10-perylene-tetracarboxylic-dianhydride (PTCDA) and the noble metal surfaces of Cu, Ag, and Au. Using this material system as an example, salient features of the (chemical) bond between an extended π-conjugated electron system and a metallic substrate are illustrated. Interface structures are a valuable indicator of the metal–molecule interaction strength. Consistent with the trend observed for small molecule adsorption, they indicate that the interaction strength of PTCDA with the metal substrate decreases in the order Cu–Ag–Au. The interfaces of PTCDA with the Au(1 1 1) and Ag(1 1 1) surfaces have been studied in particular detail. The interaction of Au(1 1 1) with PTCDA is weak, leading to point-on-line coincidence between the lattices of the substrate and the molecular overlayer. Experimental results on this surface are generally consistent with a predominantly physisorptive bonding of PTCDA. The situation is different on Ag surfaces, and in particular on Ag(1 1 1), where clear signs of PTCDA chemisorption are observed in many ensemble averaging and single molecule spectroscopies. Issues of electronic and geometric structure as well as electron–vibron interaction, and their relation to the chemical molecule–substrate interaction, are discussed in detail.  相似文献   

14.
Utilizing pure amine hydrogen bonding is a novel approach for constructing two‐dimensional (2D) networks. Further, such systems are capable of undergoing structural modifications due to changes in pH. In this study, we designed a 2D network of triaminobenzene (TAB) molecules that by varying the pH from neutral to acidic, form either ordered or disordered structures on Au(111) surface as revealed in scanning tunneling microscopy images. In near‐neutral solution (pH ≈5.5), protonation of TAB generates charged species capable of forming H‐bonds between amine groups of neighboring molecules resulting in the formation of a 2D supramolecular structure on the electrified surface. At lower pH, due to the protonation of the amine groups, intermolecular hydrogen bonding is no longer possible and no ordered structure is observed on the surface. This opens the possibility to employ pH as a chemical trigger to induce a phase transition in the 2D molecular network of triaminobenzene molecules.  相似文献   

15.
By UV-excited photoelectron emission microscopy (UV-PEEM) we investigated the microscopic growth behavior of organic thin films using 3,4,9,10-perylene-tetracarboxylicacid dianhydride (PTCDA) on a Ag(1 1 1) single crystal substrate as example. Direct, real time observation allows to correlate the initial growth modes and the related kinetic parameters with substrate properties like terrace width, step density, and step bunches from the submonolayer range up to 5 layers or more. Above room temperature PTCDA grows in a Stranski–Krastanov fashion: after completion of the first two stable layers three-dimensional islands are formed. The nucleation density strongly depends on the temperature and the substrate morphology thus affecting the properties of the organic film.  相似文献   

16.
3,4,9,10-Perylenetetracarboxylic dianhydride (PTCDA) was deposited using organic molecular beam deposition (OMBD) onto various substrates, i.e. mica(0001), Au(111) layers on mica, and Se-passivated GaAs(100). Layer thicknesses were from 2 to 30 nm. Reflectance and transmittance measurements were performed in order to identify PTCDA absorption features and find suitable laser wavelengths for subsequent Raman investigations. Despite the low thicknesses the Raman spectra reveal strong scattering by the molecular vibrational modes, in particular above 1200 cm–1. Frequency shifts of various modes in the layers from their values in PTCDA source material may indicate the influence of the substrates. Similar shifts were also observed in infrared spectra of the same materials. Received: 5 August 1998 / Received: 25 October 1998 / Accepted: 26 October 1998  相似文献   

17.
3,4,9,10-Perylenetetracarboxylic dianhydride (PTCDA) was deposited using organic molecular beam deposition (OMBD) onto various substrates, i.e. mica(0001), Au(111) layers on mica, and Se-passivated GaAs(100). Layer thicknesses were from 2 to 30 nm. Reflectance and transmittance measurements were performed in order to identify PTCDA absorption features and find suitable laser wavelengths for subsequent Raman investigations. Despite the low thicknesses the Raman spectra reveal strong scattering by the molecular vibrational modes, in particular above 1200 cm–1. Frequency shifts of various modes in the layers from their values in PTCDA source material may indicate the influence of the substrates. Similar shifts were also observed in infrared spectra of the same materials. Received: 5 August 1998 / Received: 25 October 1998 / Accepted: 26 October 1998  相似文献   

18.
Self-assembled monolayers (SAMs) of a bis(pyrazol-1-yl)pyridine-substituted thiol (bpp-SH) on Au (111)/mica were studied with scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), and near-edge X-ray absorption fine structure spectroscopy (NEXAFS). Using substrates precoated with perylene-3,4,9,10-tetracarboxylic acid dianhydride (PTCDA), preparation at elevated temperatures yields highly ordered layers whose structure is described by a rectangular (5 x radical3) unit cell containing one molecule. The bis(pyrazol-1-yl)pyridine (bpp) units exhibit pi-stacking along the 112 direction, and they are tilted significantly. We conclude the three imine nitrogen atoms in the bpp headgroup adopt a trans,trans arrangement.  相似文献   

19.
The assembly of two aminosilanes on silicon dioxide surfaces is investigated in this work. It is found that for 3-aminopropyltrimethoxysilane (APS), a smaller concentration of the silane and trace amounts of water in the deposition medium, an optimum time, and a postdeposition thermal curing are necessary to obtain a high primary-amine content. By optimization of deposition conditions, uniform APS films with a primary-amine content of 88.6% were obtained. The dependence of the primary-amine content on the experimental parameters is related to the extent to which amines are lost to hydrogen bonding with each other or with the substrate surface. Whenp-aminophenyltrimethoxysilane (APhS) was used, the primary-amine content in the film reached 100% and the surface morphology was more uniform than that of APS films under the same conditions. This is attributed to the rigid phenyl component in APhS that reduces opportunities for hydrogen bonding. In a comparison of the immobilization capacities of the different aminosilane substrates for pyromellitic dianhydride (PMDA), it is observed that higher primary-amine content favors higher uptake, and the APhS film yields 100% PMDA coverage. We infer that primary-amine content could be a measure of the film morphology and accessibility of the substrate amine groups.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号