首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Quaestiones Mathematicae》2013,36(2):237-257
Abstract

If n is an integer, n ≥ 2 and u and v are vertices of a graph G, then u and v are said to be Kn-adjacent vertices of G if there is a subgraph of G, isomorphic to Kn , containing u and v. For n ≥ 2, a Kn- dominating set of G is a set D of vertices such that every vertex of G belongs to D or is Kn-adjacent to a vertex of D. The Kn-domination number γKn (G) of G is the minimum cardinality among the Kn-dominating sets of vertices of G. It is shown that, for n ε {3,4}, if G is a graph of order p with no Kn-isolated vertex, then γKn (G) ≤ p/n. We establish that this is a best possible upper bound. It is shown that the result is not true for n ≥ 5.  相似文献   

2.
The oriented chromatic number χo(G ) of an oriented graph G = (V, A) is the minimum number of vertices in an oriented graph H for which there exists a homomorphism of G to H . The oriented chromatic number χo(G) of an undirected graph G is the maximum of the oriented chromatic numbers of all the orientations of G. This paper discusses the relations between the oriented chromatic number and the acyclic chromatic number and some other parameters of a graph. We shall give a lower bound for χo(G) in terms of χa(G). An upper bound for χo(G) in terms of χa(G) was given by Raspaud and Sopena. We also give an upper bound for χo(G) in terms of the maximum degree of G. We shall show that this upper bound is not far from being optimal. © 1997 John Wiley & Sons, Inc.  相似文献   

3.
For a simple connected undirected graph G, c(G), cf(G), Yf(G), f(G), ?G(G){\chi(G), \chi_f(G), \Psi_f(G), \phi(G), \partial \Gamma (G)} and Ψ(G) denote respectively the chromatic number, fall chromatic number (assuming that it exists for G), fall achromatic number, b-chromatic number, partial Grundy number and achromatic number of G. It is shown in Dunbar et al. (J Combin Math & Combin Comput 33:257–273, 2000) that for any graph G for which fall coloring exists, c(G) £ cf(G) £ Yf (G) £ f(G) £ ?G(G) £ Y(G){\chi (G)\leq \chi_f(G) \leq \Psi_f (G) \leq \phi(G) \leq \partial \Gamma (G)\leq \Psi (G)} . In this paper, we exhibit an infinite family of graphs G with a strictly increasing color chain: c(G) < cf(G) < Yf (G) < f(G) < ?G(G) < Y(G){\chi (G) < \chi_f(G) < \Psi_f (G) < \phi(G) < \partial \Gamma (G) < \Psi (G)} . The existence of such a chain was raised by Dunbar et al.  相似文献   

4.
LetG be a finitep-group,d(G)=dimH 1 (G, Z p) andr(G)=dimH 2(G, Zp). Thend(G) is the minimal number of generators ofG, and we say thatG is a member of a classG p of finitep-groups ifG has a presentation withd(G) generators andr(G) relations. We show that ifG is any finitep-group, thenG is the direct factor of a member ofG p by a member ofG p .  相似文献   

5.
The Laplacian of a directed graph G is the matrix L(G) = O(G) –, A(G) where A(G) is the adjaceney matrix of G and O(G) the diagonal matrix of vertex outdegrees. The eigenvalues of G are the eigenvalues of A(G). Given a directed graph G we construct a derived directed graph D(G) whose vertices are the oriented spanning trees of G. Using a counting argument, we describe the eigenvalues of D(G) and their multiplicities in terms of the eigenvalues of the induced subgraphs and the Laplacian matrix of G. Finally we compute the eigenvalues of D(G) for some specific directed graphs G. A recent conjecture of Propp for D(H n ) follows, where H n stands for the complete directed graph on n vertices without loops.  相似文献   

6.
A Planar graph g is called a ipseudo outerplanar graph if there is a subset v.∈V(G),[V.]=i,such that G-V. is an outerplanar graph in particular when G-V.is a forest ,g is called a i-pseudo-tree .in this paper.the following results are proved;(1)the conjecture on the total coloring is true for all 1-pseudo-outerplanar graphs;(2)X1(G) 1 fo any 1-pseudo outerplanar graph g with △(G)≥3,where x4(G)is the total chromatic number of a graph g.  相似文献   

7.
Ordering trees by algebraic connectivity   总被引:6,自引:0,他引:6  
LetG be a graph onn vertices. Denote byL(G) the difference between the diagonal matrix of vertex degrees and the adjacency matrix. It is not hard to see thatL(G) is positive semidefinite symmetric and that its second smallest eigenvalue,a(G) > 0, if and only ifG is connected. This observation led M. Fiedler to calla(G) thealgebraic connectivity ofG. Given two trees,T 1 andT 2, the authors explore a graph theoretic interpretation for the difference betweena(T 1) anda(T 2).Research supported by ONR contract 85K0335  相似文献   

8.
It is an open question whether or not every finitep-groupG has a presentation withd(G)=dimH 1(G,Z p ) generators andr(G)=dimH 2(G, Z p ) relations; in this article, a large number of examples are given to show that such a presentation does exist for nearly all such groups for whichr(G) has been calculated.  相似文献   

9.
In this paper,we shall mainly study the p-solvable finite group in terms of p-local rank,and a group theoretic characterization will be given of finite p-solvabel groups with p-local rank two.Theorem A Let G be a finite p-solvable group with p-local rank plr(G)=2 and Op(G)=1.If P is a Sylow p-subgrounp of G,then P has a normal subgroup Q such that P/Q is cyclic or a generalized quaternion 2-group and the p-rank of Q is at most two.Theorem B Let G be a finite p-solvable group with Op(G)=1.Then the p-length lp(G)≤plr(G);if in addition plr(G)=lp (G) and p≥5 is odd,then plr(G)=0 or 1.  相似文献   

10.
《Quaestiones Mathematicae》2013,36(3-4):161-175
Abstract

Kadec and Pelczýnski have shown that every non-reflexive subspace of L 1 (μ) contains a copy of l 1 complemented in L 1(μ). On the other hand Rosenthal investigated the structure of reflexive subspaces of L 1(μ) and proved that such sub-spaces have non-trivial type. We show the same facts to hold true for a special class of non-reflexive Orlicz spaces. In particular we show that if F is an N-function in δ2 with its complement G satisfying limt→∞ G(ct)/G(t) = ∞, then every non-reflexive subspace of L*F contains a copy of l 1 complemented in L*F. Furthermore we establish the fact that if F is an N-function in δ2 with its complement G satisfying limt→∞ G(ct)/G(t) = ∞, then every reflexive subspace of L*F has non-trivial type.  相似文献   

11.
《Quaestiones Mathematicae》2013,36(4):383-398
Abstract

A set B of vertices of a graph G = (V,E) is a k-maximal independent set (kMIS) if B is independent but for all ?-subsets X of B, where ? ? k—1, and all (? + 1)-subsets Y of V—B, the set (B—X) u Y is dependent. A set S of vertices of C is a k-maximal clique (kMc) of G iff S is a kMIS of [Gbar]. Let βk, (G) (wk(G) respectively) denote the smallest cardinality of a kMIS (kMC) of G—obviously βk(G) = wk([Gbar]). For the sequence m1 ? m2 ?…? mn = r of positive integers, necessary and sufficient conditions are found for a graph G to exist such that wk(G) = mk for k = 1,2,…,n and w(G) = r (equivalently, βk(G) = mk for k = 1,2,…,n and β(G) = r). Define sk(?,m) to be the largest integer such that for every graph G with at most sk(?,m) vertices, βk(G) ? ? or wk(G) ? m. Exact values for sk(?,m) if k ≥ 2 and upper and lower bounds for s1(?,m) are de termined.  相似文献   

12.
For a finite group G, let E(G) denote the near-ring of functions generated by the semigroup, End(G), of endomorphisms of G. We characterize when E(G) is maximal as a subnear-ring of M 0(G). A group G is an E-group if E(G) is a ring. We give a new characterization of finite E-groups and investigate the problem of determining, for finite E-groups, when E(G) is maximal as a ring in M0(G). Received: 26 June 2006  相似文献   

13.
Let E be a compact Lie group, G a closed subgroup of E, and H a closed normal sub-group of G. For principal fibre bundle (E,p, E,/G;G) tmd (E/H,p‘,E/G;G/H), the relation between auta(E) (resp. autce (E)) and autG/H(E/H) (resp. autGe/H(E/H)) is investigated by using bundle map theory and transformation group theory. It will enable us to compute the group JG(E) (resp. SG(E)) while the group J G/u(E/H) is known.  相似文献   

14.
The concept of a localk-coloring of a graphG is introduced and the corresponding localk-Ramsey numberr loc k (G) is considered. A localk-coloring ofG is a coloring of its edges in such a way that the edges incident to any vertex ofG are colored with at mostk colors. The numberr loc k (G) is the minimumm for whichK m contains a monochromatic copy ofG for every localk-coloring ofK m . The numberr loc k (G) is a natural generalization of the usual Ramsey numberr k (G) defined for usualk-colorings. The results reflect the relationship betweenr k (G) andr loc k (G) for certain classes of graphs.This research was done while under an IREX grant.  相似文献   

15.
LetG be an algebraic group over a fieldk. We callg εG(k) real ifg is conjugate tog −1 inG(k). In this paper we study reality for groups of typeG 2 over fields of characteristic different from 2. LetG be such a group overk. We discuss reality for both semisimple and unipotent elements. We show that a semisimple element inG(k) is real if and only if it is a product of two involutions inG(k). Every unipotent element inG(k) is a product of two involutions inG(k). We discuss reality forG 2 over special fields and construct examples to show that reality fails for semisimple elements inG 2 over ℚ and ℚp. We show that semisimple elements are real forG 2 overk withcd(k) ≤ 1. We conclude with examples of nonreal elements inG 2 overk finite, with characteristick not 2 or 3, which are not semisimple or unipotent.  相似文献   

16.
Let G be a claw-free graph such that (i) k(G) 3 2k(G) \geq 2, (ii) $|V (G)| \geq 8$|V (G)| \geq 8 and (iii) d(G) 3 4\delta(G) \geq 4. For every pair of edges e1, e2 of G the graph G* = G - {e1, e2}G^* = G - \{e_1, e_2\} has a 2-factor.  相似文献   

17.
LetG be a finite group and let S be a nonempty subset of G not containing the identity element 1. The Cayley (di) graph X = Cay(G, S) of G with respect to S is defined byV (X)=G, E (X)={(g,sg)|g∈G, s∈S} A Cayley (di) graph X = Cay (G,S) is said to be normal ifR(G) ◃A = Aut (X). A group G is said to have a normal Cayley (di) graph if G has a subset S such that the Cayley (di) graph X = Cay (G, S) is normal. It is proved that every finite group G has a normal Cayley graph unlessG≅ℤ4×ℤ2 orGQ 8×ℤ 2 r (r⩾0) and that every finite group has a normal Cayley digraph, where Zm is the cyclic group of orderm and Q8 is the quaternion group of order 8. Project supported by the National Natural Science Foundation of China (Grant No. 10231060) and the Doctorial Program Foundation of Institutions of Higher Education of China.  相似文献   

18.
《Quaestiones Mathematicae》2013,36(2):259-264
Abstract

An F-free colouring of a graph G is a partition {V1,V2,…,Vn} of the vertex set V(G) of G such that F is not an induced subgraph of G[Vi] for each i. A graph is uniquely F-free colourable if any two .F-free colourings induce the same partition of V(G). We give a constructive proof that uniquely C4-free colourable graphs exist.  相似文献   

19.
《Quaestiones Mathematicae》2013,36(2):159-164
Abstract

The Steiner distance d(S) of a set S of vertices in a connected graph G is the minimum size of a connected subgraph of G that contains S. The Steiner number s(G) of a connected graph G of order p is the smallest positive integer m for which there exists a set S of m vertices of G such that d(S) = p—1. A smallest set S of vertices of a connected graph G of order p for which d(S) = p—1 is called a Steiner spanning set of G. It is shown that every connected graph has a unique Steiner spanning set. If G is a connected graph of order p and k is an integer with 0 ≤ k ≤ p—1, then the kth Steiner number sk(G) of G is the smallest positive integer m for which there exists a set S of m vertices of G such that d(S) = k. The sequence so(G),s1 (G),…,8p-1(G) is called the Steiner sequence of G. Steiner sequences for trees are characterized.  相似文献   

20.
Let B(G) be the edge set of a bipartite subgraph of a graph G with the maximum number of edges. Let bk = inf{|B(G)|/|E(G)G is a cubic graph with girth at least k}. We will prove that limk → ∞ bk ≥ 6/7.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号