首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work aims to develop a new High Dimensional Model Representation (HDMR) based method which can construct an analytical structure for a given multivariate data modelling problem. Modelling multivariate data through a divide-and-conquer method stands for multivariate data partitioning process in which we deal with a number of less variate data sets instead of a single N dimensional problem. Generalized HDMR is one of these methods used to model a multivariate data set which has a number of scattered nodes with associated function values. However, Generalized HDMR includes a linear equation system with huge number of unknowns and equations to be solved. This equation sometimes has linearly dependent equations in it and this is an undesirable situation. This work offers a new method named Piecewise Generalized HDMR method which bypasses this disadvantage as well as reducing the mathematical complexity and CPU time needed to complete the algorithm of the previous method. Our new method splits the given problem domain into subdomains, applies the Generalized HDMR philosophy to each subdomain and superpositions the information coming from these subdomains. The algorithm of this new method and a number of numerical implementations are given in this paper.  相似文献   

2.
High Dimensional Model Representation (HDMR) based methods are used to generate an approximation for a given multivariate function in terms of less variate functions. This paper focuses on Hybrid HDMR which is composed of Plain HDMR and Logarithmic HDMR. The Plain HDMR method works well for representing multivariate functions having additive nature. If the function under consideration has a multiplicative nature, then the Logarithmic HDMR method produces better approximation. Hybrid HDMR method aims to successfully represent a multivariate function having neither purely additive nor purely multiplicative nature under a hybridity parameter. The performance of the Hybrid HDMR method strongly depends on the value of this hybridity parameter because this parameter manages the contribution level of Plain and Logarithmic HDMR expansions. The main purpose of this work is to optimize the hybridity parameter to get the best approximations. Fluctuationlessness Approximation Theorem is used in this optimization process and in evaluating the multiple integrals appearing in HDMR based methods. A number of numerical implementations are given at the end of the paper to show the performance of our proposed method.  相似文献   

3.
4.
High dimensional model representation (HDMR) is a general set of quantitative model assessment and analysis tools for capturing high dimensional input-output system behavior. In practice, the HDMR component functions are each approximated by an appropriate basis function expansion. This procedure often requires many input-output samples which can restrict the treatment of high dimensional systems. In order to address this problem we introduce svr-based HDMR to efficiently and effectively construct the HDMR expansion by support vector regression (SVR) for a function \(f(\mathbf{x})\). In this paper the results for independent variables sampled over known probability distributions are reported. The theoretical foundation of the new approach relies on the kernel used in SVR itself being an HDMR expansion (referred to as the HDMR kernel ), i.e., an ANOVA kernel whose component kernels are mutually orthogonal and all non-constant component kernels have zero expectation. Several HDMR kernels are constructed as illustrations. While preserving the characteristic properties of HDMR, the svr-based HDMR method enables efficient construction of high dimensional models with satisfactory prediction accuracy from a modest number of samples, which also permits accurate computation of the sensitivity indices. A genetic algorithm is employed to optimally determine all the parameters of the component HDMR kernels and in SVR. The svr-based HDMR introduces a new route to advance HDMR algorithms. Two examples are used to illustrate the capability of the method.  相似文献   

5.
This paper focuses on the Logarithmic High Dimensional Model Representation (Logarithmic HDMR) method which is a divide–and–conquer algorithm developed for multivariate function representation in terms of less-variate functions to reduce both the mathematical and the computational complexities. The main purpose of this work is to bypass the evaluation of N–tuple integrations appearing in Logarithmic HDMR by using the features of a new theorem named as Fluctuationlessness Approximation Theorem. This theorem can be used to evaluate the complicated integral structures of any scientific problem whose values can not be easily obtained analytically and it brings an approximation to the values of these integrals with the help of the matrix representation of functions. The Fluctuation Free Multivariate Integration Based Logarithmic HDMR method gives us the ability of reducing the complexity of the scientific problems of chemistry, physics, mathematics and engineering. A number of numerical implementations are also given at the end of the paper to show the performance of this new method.  相似文献   

6.
High dimensional model representation is under active development as a set of quantitative model assessment and analysis tools for capturing high-dimensional input-output system behavior based on a hierarchy of functions of increasing dimensions. The HDMR component functions are optimally constructed from zeroth order to higher orders step-by-step. This paper extends the definitions of HDMR component functions to systems whose input variables may not be independent. The orthogonality of the higher order terms with respect to the lower order ones guarantees the best improvement in accuracy for the higher order approximations. Therefore, the HDMR component functions are constructed to be mutually orthogonal. The RS-HDMR component functions are efficiently constructed from randomly sampled input-output data. The previous introduction of polynomial approximations for the component functions violates the strictly desirable orthogonality properties. In this paper, new orthonormal polynomial approximation formulas for the RS-HDMR component functions are presented that preserve the orthogonality property. An integrated exposure and dose model as well as ionospheric electron density determined from measured ionosonde data are used as test cases, which show that the new method has better accuracy than the prior one.  相似文献   

7.
A theoretical approach to the diffusion controlled kinetics of adsorption on the expanding interface of surfactant solutions is developed and compared with the experiment. This approach being an analogue of von Karman's approach to the hydrodynamic boundary layer is applicable to both submicellar and micellar surfactant solutions under large deviations from equilibrium. The partial differential equations of the convective diffusion are reduced to a set of ordinary differential equations of first order and algebraic equations. This simplifies the numerical computations and enhances the interpretation of the experimental data. Dynamic surface tension data for solutions of sodium dodecyl sulfate obtained by the maximum bubble pressure method are interpreted. Reasonable results for the diffusivity of monomers and the rate constant of micellar disintegration have been obtained.

A local approach to interfacial rheology is briefly considered. The applicability of this approach to studies of visco-elastic dilational properties of adsorption layers from low molecular surfactants and proteins is demonstrated.  相似文献   

8.
Although the HDMR decomposition has become an important tool for the understanding of high dimensional functions, the fundamental conjecture underlying its practical utility is still open for theoretical analysis. In this paper, we introduce the HDMR decomposition in conjunction with the Fourier-HDMR approximation leading to the following conclusions: (1) we suggest a type of Fourier-HDMR approximation for certain classes of differentiable functions; (2) utilizing the Fourier-HDMR method, we prove the fundamental conjecture about the dominance of low order terms in the HDMR expansion under relevant conditions, and we also obtain error estimates of the truncated HDMR expansion up to order u; (3) we prove the domain decomposition approximation theorem which shows that the global Fourier-HDMR approximation is not always optimal for a given accuracy order; (4) and finally, a piecewise Fourier-HDMR approach is discussed for high dimensional modeling. These results help to further understand how to efficiently represent the high dimensional functions.  相似文献   

9.
In this work we deal with exponentially fitted methods for the numerical solution of second order ordinary differential equations, whose solutions are known to show a prominent exponential behaviour depending on the value of an unknown parameter to be suitably determined. The knowledge of an estimation to the unknown parameter is needed in order to apply the numerical method, since its coefficients depend on the value of the parameter. We present a strategy for the practical estimation of the parameter, which is also tested on some selected problems.  相似文献   

10.
对 钝态金 属腐蚀体 系推导了 不含近 似处 理的 充电 曲线 方程 式.提 出 了使 用数 值 微分和线性 回归求 解体系电 化学参数 的计算 机方法.  相似文献   

11.
High Dimensional Model Representation (HDMR) is a general set of quantitative model assessment and analysis tools for systems with many variables. A general formulation for the HDMR component functions with independent and correlated variables was obtained previously. Since the HDMR component functions generally are coupled to one another and involve multi-dimensional integrals, explicit formulas for the component functions are not available for an arbitrary function with an arbitrary probability distribution amongst their variables. This paper presents analytical formulas for the HDMR component functions and the corresponding sensitivity indexes for the common case of a function expressed as a quadratic polynomial with a multivariate normal distribution over its variables. This advance is important for practical applications of HDMR with correlated variables.  相似文献   

12.
High-dimensional model representation (HDMR) is a general set of quantitative model assessment and analysis tools for improving the efficiency of deducing high dimensional input-output system behavior. RS-HDMR is a particular form of HDMR based on random sampling (RS) of the input variables. The component functions in an HDMR expansion are optimal choices tailored to the n-variate function f(x) being represented over the desired domain of the n-dimensional vector x. The high-order terms (usually larger than second order, or equivalently beyond cooperativity between pairs of variables) in the expansion are often negligible. When it is necessary to go beyond the first and the second order RS-HDMR, this article introduces a modified low-order term product (lp)-RS-HDMR method to approximately represent the high-order RS-HDMR component functions as products of low-order functions. Using this method the high-order truncated RS-HDMR expansions may be constructed without directly computing the original high-order terms. The mathematical foundations of lp-RS-HDMR are presented along with an illustration of its utility in an atmospheric chemical kinetics model.  相似文献   

13.
Rate constants of elementary reactions involving unimolecular steps can be calculated from molecular data in a most general way by solving appropriate master equations. The conventional numerical solution requires rather a fine discretization applied over a sufficiently large energy range to achieve a reasonable accuracy. This leads to linear but very high‐dimensional systems of differential equations. We propose a quasi‐spectral method that uses Gaussian radial basis functions to establish a low‐dimensional linear model to speed up the numerical integration. The combination with an iterative adaptation provides a further improvement of computational efficiency. The suggested approach is illustrated and exemplified by means of the unimolecular decomposition of 2,3‐dihydro‐2,5‐dimethylfuran‐3‐yl, an intermediate radical occurring in the pyrolysis and oxidation of 2,5‐dimethylfuran. A comparison of the conventional and the proposed method is presented to validate the novel approach and to demonstrate its performance.  相似文献   

14.
High Dimensional Model Representation (HDMR) method is a technique that represents a multivariate function in terms of less-variate functions. Even though the method has a finite expansion, to determine the components of this expansion is very expensive due to integration based natures of the components. Hence, the HDMR expansion is generally truncated at certain multivariance level and such approximations are produced to represent the given multivariate function approximately. The weight function selection becomes an important issue for the HDMR based applications when it is desired to give different importances to function values at different points. An appropriately chosen weight function may increase the quality of the approximation incredibly. This work aims at a multivariate weight function optimization to obtain high quality approximations through the HDMR method to represent multivariate functions. The proposed optimization considers constancy measurer maximization which produces a quadratic vector equation to be solved. Another contribution of this work is to use a recently developed method, fluctuation free integration, with HDMR, to solve this equation easily. This work is an extension of a previous work about weight optimization in HDMR for univariate functions.  相似文献   

15.
《Chemical physics letters》1987,136(5):407-412
Existing derivations of the time-dependent fluorescence anisotropy of an asymmetric molecule constitute a straightforward application of Favro's work on the rotational diffusion equation (RDE), and make no contribution to the elucidation of rotational dynamics as such. A new approach is developed, and the problem formulated in the parlance of conventional reaction kinetics by demonstrating, with the aid of the method of moments, that the RDE is completely equivalent to a set of ordinary linear differential equations, formally identical with those used to describe a first-order series-parallel reaction scheme.  相似文献   

16.
Nowadays the utilization of High Dimensional Model Representation (HDMR), which is an algorithm for approximating multivariate functions, is becoming more pervasive in the applications of approximation theory. This extensive usage motivates new works on HDMR, to get better solutions while approximating to the multivariate functions. One of them is recently developed “Combined Small Scale High Dimensional Model Representation (CSSHDMR)". This new scheme not only optimises HDMR results but also provides good approximation with less terms than HDMR does. This paper presents the theory and the numerical results of the new method and shows that it is possible to apply approximation to multivariate functions by keeping only constant term of HDMR. From this aspect CSSHDMR can be used in any scientific problem which includes multivariate functions, from chemistry to statistics.  相似文献   

17.
The High Dimensional Model Representation (HDMR) technique decomposes an n-variate function f (x) into a finite hierarchical expansion of component functions in terms of the input variables x = (x 1, x 2, . . . , x n ). The uniqueness of the HDMR component functions is crucial for performing global sensitivity analysis and other applications. When x 1, x 2, . . . , x n are independent variables, the HDMR component functions are uniquely defined under a specific so called vanishing condition. A new formulation for the HDMR component functions is presented including cases when x contains correlated variables. Under a relaxed vanishing condition, a general formulation for the component functions is derived providing a unique HDMR decomposition of f (x) for independent and/or correlated variables. The component functions with independent variables are special limiting cases of the general formulation. A novel numerical method is developed to efficiently and accurately determine the component functions. Thus, a unified framework for the HDMR decomposition of an n-variate function f (x) with independent and/or correlated variables is established. A simple three variable model with a correlated normal distribution of the variables is used to illustrate this new treatment.  相似文献   

18.
High dimensional model representation (HDMR) is a general set of quantitative model assessment and analysis tools for improving the efficiency of deducing high dimensional input–output system behavior. For a high dimensional system, an output f(x) is commonly a function of many input variables x=|x 1,x 2,...,x n } with n102 or larger. HDMR describes f(x) by a finite hierarchical correlated function expansion in terms of the input variables. Various forms of HDMR can be constructed for different purposes. Cut- and RS-HDMR are two particular HDMR expansions. Since the correlated functions in an HDMR expansion are optimal choices tailored to f(x) over the entire domain of x, the high order terms (usually larger than second order, or beyond pair cooperativity) in the expansion are often negligible. When the approximations given by the first and the second order Cut-HDMR correlated functions are not adequate, this paper presents a monomial based preconditioned HDMR method to represent the higher order terms of a Cut-HDMR expansion by expressions similar to the lower order ones with monomial multipliers. The accuracy of the Cut-HDMR expansion can be significantly improved using preconditioning with a minimal number of additional input–output samples without directly invoking the determination of higher order terms. The mathematical foundations of monomial based preconditioned Cut-HDMR is presented along with an illustration of its applicability to an atmospheric chemical kinetics model.  相似文献   

19.
This work focuses on the optimal control of a quantum system composed of harmonic oscillators under linear control agents (dipole function, objective operator, and the penalty operator whose expectation value is to be suppressed). The main purpose of the work is to determine the temporal external field amplitude function. Paper recalls the formulation of the optimal control equations first. Then a set of ordinary differential equations over the expectation values of certain unknown entities is constructed. These temporal differential equations have time varying coefficients unless the weight functions appearing in the cost functional are constant. Certain accompanying conditions are needed to get unique solutions. Investigations show that one half of the conditions should be given at the initial instant and the other half should be specified at the final moment. Since the differential equations contain another unknown entity, deviation parameter, solutions must satisfy an algebraic equation derived from the definition of this parameter. Results do not involve the explicit structure of the wave function and costate function. Only the external field amplitude and the deviation parameter are determined here. The evaluation of the wave function and costate function needs additional treatments to the control equations. We report certain analytical results for external field amplitude and the deviation parameter and give certain illustrative implementations to finalize the paper.  相似文献   

20.
This research work is oriented in the behaviour of oscillating systems. In order to study such problems, we deal with the solution of ordinary second order differential equations. A generator of families of numerical methods is developed in our effort to solve equations of that type. The families created have constant coefficients and free parameters. We calculate the free parameters taking into consideration the condition of minimal phase-lag. The new methods are applied to the problem of the time independent Schrödinger equation and their results are presented. We also examine the properties of stability and minimum local truncation error.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号