首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We report measurements of the thermal conductivity of high-quality crystals of the cubic I-V-VI2 semiconductors AgSbTe2 and AgBiSe2. The thermal conductivity is temperature independent from 80 to 300 K at a value of approximately 0.70 W/mK. Heat conduction is dominated by the lattice term, which we show is limited by umklapp and normal phonon-phonon scattering processes to a value that corresponds to the minimum possible, where the phonon mean free path equals the interatomic distance. Minimum thermal conductivity in cubic I-V-VI2 semiconductors is due to an extreme anharmonicity of the lattice vibrational spectrum that gives rise to a high Grüneisen parameter and strong phonon-phonon interactions. Members of this family of compounds are therefore most promising for thermoelectric applications, particularly as p-type materials.  相似文献   

3.
A heat transfer process is studied in a one-dimensional lattice of coupled rotators in which the orientation interaction between neighboring units is described by the periodic potential. Using this system as an example, it is demonstrated for the first time that one-dimensional lattices with a finite thermal conductivity in the thermodynamic limit can exist without substrate potential. As the temperature increases, the given system transforms from the state with an infinite thermal conductivity to the state with a finite thermal conductivity. The finiteness of the thermal conductivity stems from the existence of localized stationary excitations that interfere with heat transfer in the lattice. The lifetime and the concentration of these excitations increase with an increase in the temperature, which leads to a monotonic decrease in the thermal conductivity coefficient.  相似文献   

4.
The contribution to the lattice thermal conductivity due to the correction term (due to the three phonon normal processes) has been studied at very low temperatures in the frame of the generalized Callaway integral by deriving analytical expressions for it. The contribution of the correction term towards total phonon conductivity of Ge has been calculated in the temperature range 1–5 K and negligible contribution is found due to it.  相似文献   

5.
6.
钨是最具应用前景的面向等离子体候选材料,但核聚变堆内强烈的辐照环境会使钨的近表面区域产生辐照损伤,进而影响其关键的导热性能.本文构建了包含辐照损伤相关缺陷的晶体钨模型,并采用非平衡分子动力学的方法定量研究了这些缺陷对钨导热性能的影响.结果表明,随中子辐射能量的增加,晶体内部留下的Frenkel缺陷数目增多进而导致钨的晶格热导率降低;间隙原子比空位更易于向晶界偏聚,且钨中的间隙钨原子与空位相比,使晶格热导率下降程度更大.纳米级氦气泡导致晶格热导率的显著降低,气孔率为2.1%时晶格热导率降至完美晶体的约25%.这些不同的缺陷造成不同程度的周围晶格扭曲,增加了声子散射几率,是导致晶格热导率下降的根源.  相似文献   

7.
Summary The thermal conductivity of YBa2Cu3O7−δ high-T c superconductor is analysed self-consistently on both normal and superconducting states on the base of the Bardeen-Rickayzen-Tewordt extended theory to take into account the effects of magnetic field and superconducting fluctuations. It is shown that experimental data are in a quantitative agreement with theory even if the number and variation intervals of adjustable parameters are substantially reduced in comparison with previous works. Phonon relaxation rates due to different mechanisms of phonon scattering as well as the parameters of electron-phonon interaction are estimated. It is shown that thermal conductivity in YBa2Cu3O7−δ is consistent with the BCS model with intermediate electron-phonon coupling λ=1–3 the phonon-electron and electron-phonon relaxation times near critical temperature are evaluated to be 10−10s and 10−12s, respectively.  相似文献   

8.
A theoretical analysis of the cross-plane lattice thermal conduction in graphite is performed by using first-principles calculations and in the single-mode relaxation time approximation. The out-of-plane phonon acoustic mode ZA and optical mode ZO have almost 80% and 20% of contributions to cross-plane heat transfer, respectively. However, these two branches have a small part of total specific heat above 300 K. Phonons in the central 16% of Brillouin zone contribute80% of cross-plane transport. If the group velocity angle with respect to the graphite layer normal is less than 30?, then the contribution is 50% at 300 K. The ZA phonons with long cross-plane mean free path are focused in the cross-plane direction, and the largest mean free path is on the order of several micrometers at room temperature. The average value of cross-plane mean free path at 300 K is 112 nm for ZA phonons with group velocity angle with respect to the layer normal being less than 15?. The average value is dropped to 15 nm when phonons of all branches in the whole Brillouin zone are taken into account, which happens because most phonons have small or even no contributions.  相似文献   

9.
鲍华 《物理学报》2013,62(18):186302-186302
用一种非简谐晶格动力学方法, 使用相互作用势作为惟一的输入参数, 准确地计算了固体氩的各个声子的频率和弛豫时间. 并将这些结果进一步和玻尔兹曼输运方程相结合, 预测了固体氩从10 K 到80 K 区间的热导率, 并得到了与实验值非常符合的结果. 分析了运用非简谐晶格动力学方法进行数值计算过程中的各个相关的计算参数, 包括布里渊区中倒格子矢量的选取, δ 函数的展宽的选择等对热导率和声子弛豫时间预测结果的影响. 通过对各个声子模式对热导率贡献的分析, 发现随着温度升高, 高频声子对于热导率的贡献率也逐渐变大, 结果和理论预测完全一致. 关键词: 热导率 固体氩 非简谐晶格动力学 声子  相似文献   

10.
Thermal conductivity measurements on single crystal Nb samples in the superconducting state have demonstrated a resonant scattering of thermal phonons at roughly 5 × 1010Hz. The assumption of a mechanical resonance associated with the dislocation structure accounts for the present data and is consistent with other data found in the literature. The thermalization of phonons at an abraded sample surface, and the attendant failure of the relation l?1 = ∑jlj?1 for phonon mean free paths, was also observed.  相似文献   

11.
12.
An analytical treatment of decomposition of the phonon thermal conductivity of a crystal with a monatomic unit cell is developed on the basis of a two-stage decay of the heat current autocorrelation function observed in molecular dynamics simulations. It is demonstrated that the contributions from the acoustic short- and long-range phonon modes to the total phonon thermal conductivity can be presented in the form of simple kinetic formulas, consisting of products of the heat capacity and the average relaxation time of the considered phonon modes as well as the square of the average phonon velocity. On the basis of molecular dynamics calculations of the heat current autocorrelation function, this treatment allows for a self-consistent numerical evaluation of the aforementioned variables. In addition, the presented analysis allows, within the Debye approximation, for the identification of the temperature range where classical molecular dynamics simulations can be employed for the prediction of phonon thermal transport properties. As a case example, Cu is considered.  相似文献   

13.
Role of the characteristic temperature θ1 which differentiates non-peripheral phonons from peripheral phonons, in the estimation of the total lattice thermal conductivity of the doped sample has been studied by calculating the total phonon conductivity of P-doped Ge in the temperature range 1–5 K for the different values of θ1, for the first time.  相似文献   

14.
The non-equilibrium molecular dynamics method is adapted to calculate the phonon thermal conductivity of alphazirconium. By exchanging velocities of atoms in different regions, the stable heat flux and the temperature gradient are established to calculate the thermal conductivity. The phonon thermal conductivities under different conditions, such as different heat exchange frequencies, different temperatures, different crystallographic orientations, and crossing grain boundary (GB), are studied in detail with considering the finite size effect. It turns out that the phonon thermal conductivity decreases with the increase of temperature, and displays anisotropies along different crystallographic orientations. The phonon thermal conductivity in [0001] direction (close-packed plane) is largest, while the values in other two directions of [2īī0] and [01ī0] are relatively close. In the region near GB, there is a sharp temperature drop, and the phonon thermal conductivity is about one-tenth of that of the single crystal at 550 K, suggesting that the GB may act as a thermal barrier in the crystal.  相似文献   

15.
杨磊  吴建生  张澜庭 《中国物理》2004,13(4):516-521
We have prepared the skutterudite-related compounds FeCo_3Sb_{12} and La_{0.75}Fe_3CoSb_{12} with different average grain sizes (about 0.8 and 3.9μm) by hot pressing. Samples were characterized by XRD, EPMA and SEM. The lattice thermal conductivity was investigated in the temperature range from room temperature to 200℃. Based on the Debye model, we analyse the change in lattice thermal conductivity due to various phonon scattering mechanisms by examining the relationship between the weighted phonon relaxation time τ(ω/ω_D)^2 and the reduced phonon frequency ω/ω_D. The effect of grain boundary scattering to phonon is negligible within the range of grain sizes considered in this study. The large reduction in lattice thermal conductivity of FeCo_3Sb_{12} compound contributes to the electron-phonon scattering. As for La_{0.75}Fe_3CoSb_{12} compound, the atoms of La filled into the large voids in the structure of the skutterudite produce more significant electron-phonon scattering as well as more substitute of Fe at Co site at the same time. Moreover, the point-defect scattering appears due to the difference between the atoms of La and the void. In addition, the scattering by the rattling of the rare-earth atoms in the void is another major contribution to the reduced lattice thermal conductivity. Introducing the coupling of the electron-phonon scattering with the point-defect scattering and the scattering by the rattling of the rare-earth atom is an effective method to reduce the lattice thermal conductivity of the skutterudite-related compounds by substitution of Fe for Co and the atoms of La filled in the large voids in the skutterudite structure.  相似文献   

16.
Using transport theory, we studied the temperature dependence of the static conductivity and of the thermal emf due to multiphonon hopping in disordered semiconductors. In the low-temperature region when T < m ( m is the maximum phonon frequency), the temperature dependences of the conductivity and the thermal emf are the same as when single-phonon hopping is dominant. At higher temperatures (T m), the hopping conductivity and thermal emf are characterized by a slower dependence on reciprocal temperature than in the low-temperature region.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No.2, pp.42–47, February, 1976.The author is to V. L. Bonch-Bruevich and A. G. Mironov for discussing this work.  相似文献   

17.
A theoretic model is presented to take into account the roughness effects on phonon transport in Si nanowires (NWs). Based on the roughness model, an indirect Monte Carlo (MC) simulation is carried out to predict the lattice thermal conductivities of the NWs with different surface qualities. Through fitting the experimental data with the MC predictions, the scattering strength on phonons from the boundary, umklapp phonon-phonon processes and impurities can be estimated. It is found that the scattering on phonons by the roughness cell boundaries in a rough nanowire can reduce the phonon mean free path to be smaller than the nanowire diameter, the Casimir limit of the phonon mean free path in a flat nanowire for phonons engaged in completely diffused boundary scattering processes.  相似文献   

18.
Mo2C是构建Mxene基器件的重要材料之一,对Mo2C二维材料声子输运的理解非常必要。文章结合第一性原理方法和声子玻尔兹曼输运方程,研究了二维Mo2C材料的晶格热导率。研究表明,室温下二维Mo2C导热系数非常低,其锯齿方向和扶手椅方向的晶格热导率分别为7.20 和 5.04 W/mK。计算了声学振动和光学振动模式对晶格热导率的贡献,揭示总热导率主要由面内声学横波的振动模式所贡献。还进一步计算了声子群速度、声子弛豫时间、三声子散射空间和模式格林艾森参数,发现二维Mo2C中的声子群速度和声子弛豫时间对晶格传输有重要的影响。  相似文献   

19.
20.
The properties of two ladder-type semiconductors {M1: 2,2′-(2,7-dihexy1-4,9-dihydro-s-indaceno[1,2-b:5,6-b′]dithiophene-4,9-diylidene) dimalononitrile and M2: 2,7-dihexy1-4,9-dihydro-s-indaceno[1,2-b:5,6-b′]dithiophene-4,9-dione} as the n-type and ambipolar organic materials are systematically investigated using the first-principle density functional theory combined with the Marcus–Hush electron transfer theory. It is found that the substitution of M1 induces large changes in its electron-transfer mobility of 1.370 cm2 V?1 s?1. M2 has both large electron- and hole-transfer mobility of 0.420 and 0.288 cm2 V?1 s?1, respectively, which indicates that M2 is potentially a high efficient ambipolar organic semiconducting material. Both the M1 and M2 crystals show remarkable anisotropic behavior. A proper design of the n-type and ambipolar organic electronic materials, which may have high mobility performance, is suggested based on the investigated two molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号