首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structure and electrochemical properties of polyethylene terephthalate track membranes modified in acetylene plasma are studied. It is found that polymer deposition on the track membrane surface using acetylene polymerization in plasma results in the case of formation of a semipermeable layer covering pores in formation of a composite nanomembrane featuring asymmetry of conductivity in solutions of electrolytes: a rectifying effect similar to that of a p-n junction in semiconductors. It is shown that the observed effect of conductivity asymmetry is caused by a significant decrease in the diameter of pores in the plasma-deposited polymer layer and a change in the pore geometry, same as existence of an interface between the initial membrane and polymer layer that have a different concentration of carboxyl groups in the surface layer. The impedance spectroscopy method allowed obtaining information on ion transfer in the studied membranes.  相似文献   

2.
Composite ultrafiltration membranes were fabricated by coating a thin film of self‐assembling polystyrene‐block‐poly(ethylene oxide) (PS‐b‐PEO) block copolymers and poly(acrylic acid) homopolymers on top of a support membrane. Block copolymers self‐assembled into a nanostructure where the minority component forms cylinders, whereas homopolymers reside in the core of the cylinders. Selective removal of the homopolymers led to the formation of pores. The morphology of the polymer layer was controlled by varying the content of homopolymers or polymer concentration of the coating solution, which led to membranes with different molecular weight cutoffs (MWCOs) and permeabilities. Uniform pores were obtained using low homopolymer contents, whereas high homopolymer contents caused macrophase separation and resulted in large polydisperse pores or craters at the surface. The thickness of the block copolymer film also influenced the structure and performance of the membranes, where a thicker film results in a strong decrease in permeability but a lower MWCO. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1546–1558  相似文献   

3.
Surface initiated polymerization of N(isopropylacrylamide) (NIPAM) was performed by controlled radical polymerization on PET track-etched membranes presenting two different pore diameters (narrow pores: ∼80 nm and large pores: ∼330 nm). The opening and closing characteristics of the resulting PNIPAM-g-PET membranes were investigated by conductometric measurements carried out at different temperatures below and above the LCST of PNIPAM and in the presence of different salts. Depending on the membrane pore size, two types of permeation control mechanisms are observed. In large pore membranes, expanded PNIPAM chains conformations result in reduced effective pore size and therefore lower permeabilities relative to collapsed macromolecules chain conformations. In contrast, in narrow pore membranes, the expanded PNIPAM brush presents greater degrees of hydration in the surface layer and therefore gives rise to higher permeabilities than the collapsed conformation. In this situation, the overall permeability is thus comparable to that of a hydrogel membrane.  相似文献   

4.

The polymer networks with nanoporous structure were obtained by the crosslinking free-radical copolymerization of N-vinylpyrrolidone with triethylene glycol dimethacrylate in bulk in the presence of amphiphilic copolymer and its fractions as templates. The templating agents consisted of copolymer or their fragments with similar monomer units and different molecular weight. Macromolecular templates were shown to be removed from the polymer composite by PriOH leaving the pores. The values of the specific surface areas, the total pore volumes, pore size, and pore size distribution were measured by the method of low-temperature nitrogen absorption. The maximum value of the specific surface area was calculated to be ~26 m2 g–1. The value was significantly higher than that for the usual copolymer network. The relationship between specific surface area, parameters of pores, and macromolecular structure of template has been established. It is shown by Brunauer—Emmett—Teller method that the macromolecules having a branched architecture are more effective for the preparation of the polymer network with more developed specific surface area and narrow pore size distribution.

  相似文献   

5.
SEM研究PET核孔膜的光接枝聚合   总被引:2,自引:0,他引:2  
以PET核孔膜为基材 ,二苯甲酮为引发剂 ,采用光接枝方法实现了丙烯酸和丙烯酰胺在核孔膜上的接枝 ,用扫描电镜 (SEM)直接观察了接枝前后膜的表面形貌 ,考察了不同因素对于接枝位置和接枝效果的影响 .发现膜材料本身特性和接枝反应条件对接枝位置和接枝效果有较大影响 .通过光接枝能够实现膜孔的封盖、缩小、填堵等不同的效果 .采用正侧涂布法反应 ,标准直孔 ,特别是小孔径膜 (0 4 μm) ,不利于孔内的接枝 ,接枝主要在膜的表面 ,从而产生孔封盖效应 .双锥形的非标准直孔 ,由于孔壁的受光性好 ,容易发生孔壁上的接枝从而被填充 .大孔径的膜 (5 μm) ,需要加入交联剂才能在孔壁上形成厚的接枝层 .提出了一种新的反应方法 背侧吸附法 ,反应液依靠毛细作用由膜的底部吸入膜孔 ,膜的向光侧表面不存在反应液 ,接枝只发生在膜孔内 ,从而得到很好的填孔效果 .  相似文献   

6.
Particle track etched polyimide membranes on silicon substrates covered with a native oxide layer are investigated. Preparation steps similar to the common classical particle track etched membrane production, giving rise to free-standing membranes, are successfully applied to the supported membranes. Polyimide films are used as a starting material for a template preparation based on high energy ion irradiation. The film/membrane structure is probed at different length scales by grazing incidence small-angle X-ray scattering at each individual preparation step. In addition, characterization with atomic force microscopy, variable-angle spectroscopic ellipsometry, Fourier transform infrared transmission, and attenuated total reflection spectroscopy is performed. An amount of 6 +/- 1 vol % pores inside the polyimide film is detected. The pores are oriented perpendicular to the substrate surface and have a conical shape, yielding a slightly reduced pore size at the substrate/film interface.  相似文献   

7.
In capillary systems with narrow pores the Helmholtz electrochemical double layer located at the pore wall extends over the entire cross section of the pores. It loses its character as the “charge on the wall”. It will be shown that not only the electrokinetic phenomena but also the electrical conductivity and the dialysis potential of membranes with narrow pores can be understood from the same point of view, namely: the electrolyte solution in the pores of a membrane with narrow pores is considered to be an approximately homogeneous solution in contact with immobilised charges located at the pore wall. In this case the electrochemical equations contain the fixed ion concentration as a parameter instead of the ζ potential. This makes it possible to describe quantitatively to a good approximation data on the electroosmosis, the electrical conductivity, the streaming potential and the dialysis potential taken from the literature, as well as results of our own measurements, by using a single membrane constant.  相似文献   

8.
We have recently proposed a new method for generating uniformly sized microbubbles from Shirasu porous glass (SPG) membranes with a narrow pore size distribution. In this study, to obtain a high gas permeation rate through SPG membranes in microbubble formation process, asymmetric SPG membranes were used. At the transmembrane/bubble point pressure ratio of less than 1.50, uniformly sized microbubbles with a bubble/pore diameter ratio of approximately 9 were generated from an asymmetric SPG membrane with a mean pore diameter of 1.58 μm and a skin-layer thickness of 12 ± 2 μm at a gaseous-phase flux of 2.1–24.6 m3 m−2 h−1, which was much higher than that through a symmetric SPG membrane with the same pore diameter. This is mainly due to the much smaller membrane resistance of the asymmetric SPG membrane. Only 0.27–0.43% of the pores of the asymmetric SPG membrane was active under the same conditions. The proportion of active pores increased with a decrease in the thickness of skin layer. In contrast to the microbubble formation from asymmetric SPG membranes, polydispersed larger bubbles were generated from asymmetric porous ceramic membranes used in this study, due to the surface defects on the skin layer. The surface defects were observed by the scanning electron microscopy and detected by the bubble point method.  相似文献   

9.
The features of etching of latent tracks of heavy ions in poly(ethylene terephthalate) up to pore formation were investigated. It was found that the etching process included the following stages: (1) electrolyte penetration into the pores due to capillary forces and removal of monomeric radiolysis products; (2) swelling of the cross-linked (due to secondary electrons) polymer areas around the tracks to give the gel layer; (3) removal of the gel layer and the formation of track membranes with a pore radius of 40–50 Å. The radiation-chemical processes in polymers influence the physicochemical properties of the obtained membranes. The microrelief of the membrane surface was studied by atomic-force microscopy.  相似文献   

10.
Pore size distributions and pore densities of track-etched polycarbonate ultrafiltration (UF) membranes with pore sizes ranging from 10 to 100 nm (0.01–0.10 μm) were characterized by image analysis of field emission scanning electron micrographs (FESEM) of membranes. Porosity data obtained from image analysis compared well with those derived from manufacturer's specifications, but this may have been coincidental, as pore size and pore density results differed by 20–40% and 25–70%, respectively. The experimentally determined flux through each membrane type varied by up to 30–45% within a batch, and were about 8–46 times higher than the theoretical over the range of membranes. The disparity between theoretical and experimental flux was beyond the bounds of physical variability of the membranes. The membranes with smaller pore size tended to show a greater disparity. Water flux of all membranes increased with increasing temperature, generally in accord with the decreasing viscosity of water. However, unlike the linear increase for the membranes with larger pores (> 50 nm), the membranes with smaller pores (10 and 30 nm) showed exponential increase with temperature. Water flux also increased with a pressure increase from 50 to 300 kPa. Raised pressure appear to enlarge pores resulting in exponential flux enhancement at higher pressure, particularly for membranes with smaller pores (PC10). The pores may have stretched open under pressure to deliver the higher than expected fluxes due to flexibility of polycarbonate films, although FESEM showed no visible evidence of fracturing or tearing of the membranes. The flux results from filtration of aqueous protein solution were a little lower and correlated well with water permeability of the membranes, but remained in discord with the pore size distribution results.  相似文献   

11.
The process of geometrical modification of pores in poly(ethylene terephthalate) track-etched membranes (TM) by use of plasma deposition of a fluorine-containing polymer protective layer on one membrane surface and alkali etching of the other surface has been studied in order to produce membranes with improved performance characteristics. Samples of membranes with conical pores have been obtained which have better filtration efficiency compared with initial TM with cylindric pores. Plasma polymerization of 1H,1H,2H-perfluoro-1-octene at the membrane surface was used to produce the protective layer resistant to alkali solutions. The occurrence of plasma modification and changing of pore geometry have been verified by X-ray photoelectron spectroscopy and scanning electron microscopy studies. The filtration efficiency and selectivity of the modified membranes have been studied.  相似文献   

12.
Cubic and circular hexagonal mesoporous carbon phases in the confined environment of the pores of anodic alumina membranes (AAM) were obtained by organic-organic self-assembly of a preformed oligomeric resol precursor and the triblock copolymer templates Pluronic F127 or P123, respectively. Casting and solvent evaporation were followed by self-assembly and the formation of a condensed wall material by thermopolymerization of the precursor oligomers, thus resulting in mesostructured phenolic resin phases. Subsequent thermal decomposition of the surfactant and carbonization were achieved through thermal treatment at temperatures up to 1000 °C under an inert atmosphere. The resulting hierarchical mesoporous composite materials were characterized by small-angle X-ray scattering and nitrogen-sorption measurements. The structural features were directly imaged in TEM cross-sections of the composite membranes. For both structures, the AAM pores were completely filled and no shrinkage was observed due to strong adhesion of the carbon-wall material to the AAM pore walls. As a consequence, the pore size of the mesophase system stays almost constant even after thermal treatment at 1000 °C.  相似文献   

13.
Various ultrafiltration and nanofiltration membranes were characterized by solute transport and also by atomic force microscope (AFM). The molecular weight cut-off (MWCO) of the membranes studied were found to be between 3500 and 98,000 Daltons. The mean pore size (μp) and the geometric standard deviation (σp) around mean ranged from 0.7 to 11.12 nm and 1.68 to 3.31, respectively, when calculated from the solute transport data. Mean pore sizes measured by AFM were about 3.5 times larger than calculated from the solute transport. Pore sizes measured by AFM were remarkably fitted to the log-normal probability distribution curve. Pore sizes of the membranes with low MWCO (20,000 Daltons and lower) could not be measured by AFM because of indistinct pores. In most cases, the pore density ranged from 38 to 1291 pores/μm2. In general, the pore density was higher for the membrane having lower MWCO. Surface porosity was around 0.5–1.0% as measured from the solute transport and was 9.5–12.9% as obtained from AFM images. When membranes were coated with a thin layer of sulfonated polyphenylene oxide, mean pore sizes were reduced for all the membranes. Surface roughness was also reduced on coating.  相似文献   

14.
Ultra-high molecular weight polyethylene membranes were modified and subsequently polymer coated using the underwater plasma produced by glow discharge electrolysis. This plasma pretreatment generated various O-functional groups among them OH groups have dominated. This modified inner (pore) surface of membranes showed complete wetting and strong adhesion to a hydrogel copolymerized by glow discharge electrolysis also. The deposited hydrogel consists of plasma polymerized acrylic acid crosslinked by copolymerization with the bifunctional N,N′-methylenebis(acrylamide). Tuning the hydrogel hydrophilicity and bio-compatibility poly(ethylene glycol) was chemically inserted into the copolymer. Such saturated polymer could only be inserted on a non-classic way by (partial) fragmentation and recombination thus demonstrating the exotic properties of the underwater plasma. The modification of membrane was achieved by squeezing the reactive plasma solution into the pores by plasma-induced shock waves and supported by intense stirring. The deposited copolymer hydrogel has filled all pores also in the inner of membrane as shown by scanning electron microscopy of cross-sections. The copolymer shows the characteristic units of acrylic acid and ethylene glycol as demonstrated by infrared spectroscopy. A minimum loss in carboxylic groups of acrylic acid during the plasma polymerization process was confirmed by X-ray photoelectron spectroscopy. Additional cell adhesion tests on copolymer coated polyethylene using IEC-6 cells demonstrated the bio-compatibility of the plasma-deposited hydrogel.  相似文献   

15.
The structure of porous TiO2 films and TiO2:poly(N-vinylcarbazole) (PVK) composite films is investigated with time-of-flight grazing incidence small-angle neutron scattering (TOF-GISANS). The TiO2 films have been prepared by application of a sol–gel process with a diblock copolymer as structure directing agent, and the conductive polymer PVK is infiltrated in the porous network by spin coating and solution casting. The films show a hierarchical pore structure with mesopores 52 nm in size and additional large macropores with a diameter of about 180 nm. By matching the scattering contrast of the TiO2 with the polymer information about the penetration of the polymer in the pores is determined. Whereas in the PVK film prepared by solution casting the pores are filled to a high degree; in the spin coated film, PVK wets only the TiO2 pore walls and forms a solid overlying layer. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1628–1635, 2010  相似文献   

16.
Summary: Organic‐inorganic hybrid materials consisting of nanosized silica particles with surface grafted PS or PS‐b‐PMMA were synthesized using ATRP. These hybrid materials were used in the fabrication of highly‐ordered isoporous membranes. Optical characterization revealed that the membranes consisted of hexagonally ordered pores of uniform size. The combination of an open pore structure and high surface area makes isoporous membranes into materials of high interest in fields as biotechnology and photonics.

Image from optical microscope of hybrid nanoparticle membrane of SiO2g‐PS with hexagonally‐ordered pores.  相似文献   


17.
Multivariate methods were used to identify relationships between bacterial attachment (biofouling potential), water transport, and the surface properties of nine modified polysulfone (MPS) membranes comprising blends of polysulfone (PS) with a sulfonated polyether-ethersulfone/polyethersulfone block copolymer. The topology of the microporous MPS membranes, including surface roughness, surface height, pore size and pore geometry were determined by atomic force microscopy (AFM) and digital image analysis. Other measurements included relative surface hydrophobicity by captive bubble contact angle, surface charge (i.e., degree of sulfonation) by uranyl cation binding, wt% solids, porosity, membrane thickness, water flux, and the affinity of membranes for a hydrophilic Flavobacterium and hydrophobic Mycobacterium species. The mycobacteria attached best to the MPS membranes, but the attachment of both organisms was inversely correlated with the mean aspect ratio of pores, suggesting that irregular or elliptic pores discouraged attachment. Multivariate regression analyses identified the pore mean aspect ratio, mean surface height, PS content, and the n-methylpyrrolidone+propionic acid (NMP–PA) solvent concentration as influential factors in Mycobacterium attachment, whereas membrane thickness, surface roughness, pore mean aspect ratio, porosity, and the mean pore area/image area ratio influenced Flavobacterium attachment. Cluster analyses revealed that Mycobacterium attachment was associated with hydrophobic determinants of the MPS membranes, including PS content, wt% solids, and air bubble contact angle. In contrast, Flavobacterium attachment was primarily associated with membrane thickness and charge (i.e., uranyl cation binding or degree of sulfonation). Membrane flux was inversely correlated with surface hydrophobicity and PS content, but (in contrast to cell attachment) positively correlated with most pore geometry parameters including the mean aspect ratio, suggesting that pore geometry can be optimized to minimize cell attachment and maximize water transport. Other variables influencing water flux included the NMP–PA solvent concentration and membrane roughness. The results should facilitate the design of novel microporous PS membranes having reduced biofouling potentials and greater water fluxes.  相似文献   

18.
The porous copolymer films of N-methacryloyl-L -alanine methyl ester and diethyleneglycol-bis-allylcarbonate (diallyl oxydiethylene dicarbonate) were hydrolyzed with 1 M NaOH solution for 40 min at 25°C. The pores of the films showed pH response in diameter. The pore diameter of 3,7 μm in the buffer solution of pH 3 was closed completely at pH 5.  相似文献   

19.
Microsieves are advanced filtration membranes characterized by a uniform pore size, a high pore density, and a thickness smaller than the pore diameter. The uniform pore size provides a high selectivity; the small thickness gives rise to a high flux and allows efficient removal of any filter cake by backflushing. However, microsieves are sensitive to mechanical stress. Thus, they need either an external macroporous support or a hierarchical structure that provides an integrated supportive structure. We prepare microsieves with a hierarchical pore structure by creating breath figure patterns within layers of solutions of polymers in a volatile solvent that are spread out on top of structured supports. For the formation of breath figure patterns, the volatile solvent is evaporated in a moist atmosphere. This cools the surface to such an extent that dew droplets form on the thin film, partially penetrate into the layer, and create a concave imprint in the final solid polymer layer. This procedure is usually done on flat surfaces; in our case the spreading of the polymer solution is done on a support decorated with protrusions. In this procedure, the dew droplets touch the protrusions of the structured support before the polymer solution vitrifies. At the same time, the trenches of the structured substrate are filled with polymer much deeper than the penetration depth of the dew droplets. After the separation of the vitrified layer from the substrate, we obtain thin polymer membranes with a hierarchical structure consisting of an ultrathin active separation layer with submicrometer pores and a supporting layer with larger pores.  相似文献   

20.
The self‐assembly of block copolymers is an emerging strategy to produce isoporous ultrafiltration membranes. However, thus far, it has not been possible to bridge the gap from ultra‐ to nanofiltration and decrease the pore size of self‐assembled block copolymer membranes to below 5 nm without post‐treatment. It is now reported that the self‐assembly of blends of two chemically interacting copolymers can lead to highly porous membranes with pore diameters as small as 1.5 nm. The membrane containing an ultraporous, 60 nm thin separation layer can fully reject solutes with molecular weights of 600 g mol?1 in aqueous solutions with a water flux that is more than one order of magnitude higher than the permeance of commercial nanofiltration membranes. Simulations of the membrane formation process by dissipative particle dynamics (DPD) were used to explain the dramatic observed pore size reduction combined with an increase in water flux.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号