首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study uses computational chemistry and statistical reaction rate theory to investigate the chemically activated reaction of diacetylene (butadiyne, C(4)H(2)) with the propargyl radical (C˙H(2)CCH) and the reaction of acetylene (C(2)H(2)) with the i-C(5)H(3) (CH(2)CCCC˙H) and n-C(5)H(3) (CHCC˙HCCH) radicals. A detailed G3SX-level C(7)H(5) energy surface demonstrates that the C(3)H(3) + C(4)H(2) and C(5)H(3) + C(2)H(2) addition reactions proceed with moderate barriers, on the order of 10 to 15 kcal mol(-1), and form activated open-chain C(7)H(5) species that can isomerize to the fulvenallenyl radical with the highest barrier still significantly below the entrance channel energy. Higher-energy pathways are available leading to other C(7)H(5) isomers and to a number of C(7)H(4) species + H. Rate constants in the large multiple-well (15) multiple-channel (30) chemically activated system are obtained from a stochastic solution of the one-dimensional master equation, with RRKM theory for microcanonical rate constants. The dominant products of the C(4)H(2) + C(3)H(3) reaction at combustion-relevant temperatures and pressures are i-C(5)H(3) + C(2)H(2) and CH(2)CCHCCCCH + H, along with several quenched C(7)H(5) intermediate species below 1500 K. The major products in the n-C(5)H(3) + C(2)H(2) reaction are i-C(5)H(3) + C(2)H(2) and a number of C(7)H(4) species + H, with C(7)H(5) radical stabilization at lower temperatures. The i-C(5)H(3) + C(2)H(2) reaction predominantly leads to C(7)H(4) + H and to stabilized C(7)H(5) products. The title reactions may play an important role in polycyclic aromatic hydrocarbon (PAH) formation in combustion systems. The C(7)H(5) potential energy surface developed here also provides insight into several other important reacting gas-phase systems relevant to combustion and astrochemistry, including C(2)H + the C(3)H(4) isomers propyne and allene, benzyne + CH, benzene + C((3)P), and C(7)H(5) radical decomposition, for which some preliminary analysis is presented.  相似文献   

2.
Non-centrosymmetric pi-conjugated systems incorporating closo-dodecaborate clusters, [NC-C6H4-C(H=N(H)-B12H11]-(2), [NC-C6H4-C(H)=C(H)-C(6)H(4)-C(H)=N(H)-B12H11]-(3), and [NC-C6H4-C(H)=C(H)-C6H4-C(H)=C(H)-C6H4-C(H)=N(H)-B12H11]-(4) have been synthesized by reaction of the monoamino derivative of B12, [B12H11NH3]-(1), with various arylaldehydes, R-C6H4-CHO. These Schiff base-like compounds were fully characterized by multinuclear NMR spectroscopy and mass spectrometry. In order to evaluate these boron rich pi-systems as potential materials for two-photon absorption (TPA) processes, UV linear absorption curves were recorded for 3 and 4, and comparatively studied with those of the boron-free pi-systems NC-C6H4-C(H)=N-CH3(5) and NC-C6H4-C(H)=C(H)-C6H4-C(H)=N-CH3(6). The donor effect of the boron cluster was evidenced by a shift to the lower energy of the absorption band in the spectra of systems incorporating B12. The two photon absorption (TPA) spectrum of compound , obtained by the up-conversion method, shows a resonance at 720 nm with a cross-section sigma(TPA) of 35 x 10(-50) cm(4) s photon(-1) molecule(-1). This value suggests the potential of B12 clusters to be used as new donor groups for the synthesis of non-linear materials.  相似文献   

3.
The heterobimetallic actinide compound UO(2)Ce(H(2)O)[C(6)H(4)(PO(3)H)(2)](2)·H(2)O was prepared via the hydrothermal reaction of U(VI) and Ce(IV) in the presence of 1,2-phenylenediphosphonic acid. We demonstrate that this is a kinetic product that is not stable with respect to decomposition to the monometallic compounds. Similar reactions have been explored with U(VI) and Ce(III), resulting in the oxidation of Ce(III) to Ce(IV) and the formation of the Ce(IV) phosphonate, Ce[C(6)H(4)(PO(3)H)(PO(3)H(2))][C(6)H(4)(PO(3)H)(PO(3))]·2H(2)O, UO(2)Ce(H(2)O)[C(6)H(4)(PO(3)H)(2)](2)·H(2)O, and UO(2)[C(6)H(4)(PO(3)H)(2)](H(2)O)·H(2)O. In comparison, the reaction of U(VI) with Np(VI) only yields Np[C(6)H(4)(PO(3)H)(2)](2)·2H(2)O and aqueous U(VI), whereas the reaction of U(VI) with Pu(VI) yields the disordered U(VI)/Pu(VI) compound, (U(0.9)Pu(0.1))O(2)[C(6)H(4)(PO(3)H)(2)](H(2)O)·H(2)O, and the Pu(IV) phosphonate, Pu[C(6)H(4)(PO(3)H)(PO(3)H(2))][C(6)H(4)(PO(3)H)(PO(3))]·2H(2)O. The reactions of Ce(IV) with Np(VI) yield disordered heterobimetallic phosphonates with both M[C(6)H(4)(PO(3)H)(PO(3)H(2))][C(6)H(4)(PO(3)H)(PO(3))]·2H(2)O (M = Ce, Np) and M[C(6)H(4)(PO(3)H)(2)](2)·2H(2)O (M = Ce, Np) structures, as well as the Ce(IV) phosphonate Ce[C(6)H(4)(PO(3)H)(PO(3)H(2))][C(6)H(4)(PO(3)H)(PO(3))]·2H(2)O. Ce(IV) reacts with Pu(IV) to yield the Pu(VI) compound, PuO(2)[C(6)H(4)(PO(3)H)(2)](H(2)O)·3H(2)O, and a disordered heterobimetallic Pu(IV)/Ce(IV) compound with the M[C(6)H(4)(PO(3)H)(PO(3)H(2))][C(6)H(4)(PO(3)H)(PO(3))]·2H(2)O (M = Ce, Pu) structure. Mixtures of Np(VI) and Pu(VI) yield disordered heterobimetallic Np(IV)/Pu(IV) phosphonates with both the An[C(6)H(4)(PO(3)H)(PO(3)H(2))][C(6)H(4)(PO(3)H)(PO(3))]·2H(2)O (M = Np, Pu) and An[C(6)H(4)(PO(3)H)(2)](2)·2H(2)O (M = Np, Pu) formulas.  相似文献   

4.
Structure, stability, and spectra of C9H3, C11H3, and C13H3 radicals   总被引:1,自引:0,他引:1  
Density functional theory has been used to investigate the geometries, vibrational frequencies, rotational constants, and dipole moments of the C(9)H(3), C(11)H(3), and C(13)H(3) radicals. Vertical electronic transition energies of C(9)H(3), C(11)H(3), and C(13)H(3) are calculated by the time-dependent density functional theory. Present results show that the most stable arrangements of C(9)H(3), C(11)H(3), and C(13)H(3) are H(2)C(9)H, H(2)C(11)H, and H(2)C(13)H with a C(2v) symmetry, respectively. Such lowest-energy isomers have an obvious single and triple bond alternation carbon chain. Their isomers HC(4)(HC)C(4)H, HC(4)[C(C(2)H)]C(4)H, and C(C(4)H)(3) are predicted to have vibrational frequencies and vertical excitation energies in good agreement with experimental observations. HC(4)(HC)C(4)H, HC(4)[C(C(2)H)]C(4)H, and C(C(4)H)(3) have similar trigonal structure, which gives rise to the remarkably similar spectroscopic features as obtained experimentally. On the basis of present calculations, the isomers HC(4)(HC)C(4)H, HC(4)[C(C(2)H)]C(4)H, and C(C(4)H)(3) of C(9)H(3), C(11)H(3), and C(13)H(3) radicals are most likely the carriers of the observed spectra.  相似文献   

5.
The reactions of the cationic, diiron-bridging carbyne complexes [Fe(2)(mu-CAr)(CO)(4)(eta(8)-C(8)H(8))]BF(4) (1, Ar=C(6)H(5); 2, Ar=p-CH(3)C(6)H(4); 3, Ar=p-CF(3)C(6)H(4)) with LiN(C(6)H(5))(2) in THF at low temperature gave novel N-nucleophilic-addition products, namely, the neutral, diiron-bridging carbyne complexes [Fe(2)(mu-CAr)(CO)(4)(eta(7)-C(8)H(8)N(C(6)H(5))(2))] (4, Ar=C(6)H(5); 5, Ar=p-CH(3)C(6)H(4); 6, Ar=p-CF(3)C(6)H(4))). Cationic bridging carbyne complexes 1-3 react with (C(2)H(5))(2)NH, (iC(3)H(7))(2)NH, and (C(6)H(11))(2)NH under the same conditions with ring cleavage of the COT ligand to produce the novel diiron-bridging carbene inner salts [Fe(2)[mu-C(Ar)C(8)H(8)NR(2)](CO)(4)] (7, Ar=C(6)H(5), R=C(2)H(5); 8, Ar=p-CH(3)C(6)H(4), R=C(2)H(5); 9, Ar=p-CF(3)C(6)H(4), R=C(2)H(5); 10, Ar=C(6)H(5), R=iC(3)H(7); 11, Ar=p-CH(3)C(6)H(4), R=iC(3)H(7); 12, Ar=p-CF(3)C(6)H(4), R=iC(3)H(7); 13, Ar=C(6)H(5), R=C(6)H(11); 14, Ar=p-CH(3)C(6)H(4), R=C(6)H(11), 15, Ar=p-CF(3)C(6)H(4), R=C(6)H(11)). Piperidine reacts similarly with cationic carbyne complex 3 to afford the corresponding bridging carbene inner salt [Fe(2)[mu-C(Ar)C(8)H(8)N(CH(2))(5)](CO)(4)] (16). Compound 9 was transformed into a new diiron-bridging carbene inner salt 17, the trans isomer of 9, by heating in benzene. Unexpectedly, the reaction of C(6)H(5)NH(2) with 2 gave a novel COT iron-carbene complex [Fe(2)[=C(C(6)H(4)CH(3)-p)NHC(6)H(5)](mu-CO)(CO)(3)(eta(8)-C(8)H(8))] (18). However, the analogous reactions of 2-naphthylamine with 2 and of p-CF(3)C(6)H(4)NH(2) with 3 produce novel chelated iron-carbene complexes [Fe(2)[=C(C(6)H(4)CH(3)-p)NC(10)H(7)](CO)(4)(eta(2):eta(3):eta(2)-C(8)H(9))] (19) and [Fe(2)[=C(C(6)H(4)CF(3)-p)NC(6)H(4)CF(3)-p](CO)(4)(eta(2):eta(3):eta(2)-C(8)H(9))] (20), respectively. Compound 18 can also be transformed into the analogous chelated iron-carbene complex [Fe(2)[=C(C(6)H(4)CH(3)-p)NC(6)H(5)](CO)(4)(eta(2):eta(3):eta(2)-C(8)H(9))] (21). The structures of complexes 6, 9, 15, 17, 18, and 21 have been established by X-ray diffraction studies.  相似文献   

6.
We present calculations for the mechanism and the barrier heights of tautomerization of adenine. We find various pathways for the 9(H) <--> 7(H) and 9(H) <--> 3(H) tautomerization. One mechanism for the 9(H) --> 7(H) tautomerization involves an sp(3)- or carbene-type intermediate, whereas the other proceeds via imine intermediates. Tautomerization from the 9(H) tautomer to 7(H) or 3(H) is predicted to occur with a very large activation barrier (60-70 kcal/mol), indicating that the processes may not occur readily in the gas phase. Interactions with the water molecule(s) are found to lower the barrier tremendously. We suggest that dramatic lowering of the 9(H) --> 3(H) and 9(H) --> 7(H) barriers by microsolvating water molecules may facilitate the formation and observation of the 7(H) and 3(H) tautomers in the solution phase.  相似文献   

7.
The vacuum-ultraviolet photoionization and dissociative photoionization of 1,3-butadiene in a region ~8.5-17 eV have been investigated with time-of-flight photoionization mass spectrometry using tunable synchrotron radiation. The adiabatic ionization energy of 1,3-butadiene and appearance energies for its fragment ions, C(4)H(5)(+), C(4)H(4)(+), C(4)H(3)(+), C(3)H(3)(+), C(2)H(4)(+), C(2)H(3)(+), and C(2)H(2)(+), are determined to be 9.09, 11.72, 13.11, 15.20, 11.50, 12.44, 15.15, and 15.14 eV, respectively, by measurements of photoionization efficiency spectra. Ab initio molecular orbital calculations have been performed to investigate the reaction mechanism of dissociative photoionization of 1,3-butadiene. On the basis of experimental and theoretical results, seven dissociative photoionization channels are proposed: C(4)H(5)(+) + H, C(4)H(4)(+) + H(2), C(4)H(3)(+) + H(2) + H, C(3)H(3)(+) + CH(3), C(2)H(4)(+) + C(2)H(2), C(2)H(3)(+) + C(2)H(2) + H, and C(2)H(2)(+) + C(2)H(2) + H(2). Channel C(3)H(3)(+) + CH(3) is found to be the dominant one, followed by C(4)H(5)(+) + H and C(2)H(4)(+) + C(2)H(2). The majority of these channels occur via isomerization prior to dissociation. Transition structures and intermediates for those isomerization processes were also determined.  相似文献   

8.
Three new calcium phenylphosphonates, CaC(6)H(5)PO(3).2H(2)O, Ca(3)(C(6)H(5)PO(3)H)(2)(C(6)H(5)PO(3))(2).4H(2)O, and CaC(6)H(5)PO(3).H(2)O, and two calcium 4-carboxyphenylphosphonates, Ca(HOOCC(6)H(4)PO(3)H)(2) and Ca(3)(OOCC(6)H(4)PO(3))(2).6H(2)O, were prepared. It was found that CaC(6)H(5)PO(3).2H(2)O transformed into previously known Ca(C(6)H(5)PO(3)H)(2) via Ca(3)(C(6)H(5)PO(3)H)(2)(C(6)H(5)PO(3))(2).4H(2)O in the presence of phenylphosphonic acid, and vice versa, Ca(C(6)H(5)PO(3)H)(2) turned into CaC(6)H(5)PO(3).2H(2)O in a weak basic medium. A similar relationship was found between Ca(HOOCC(6)H(4)PO(3)H)(2) and Ca(3)(OOCC(6)H(4)PO(3))(2).6H(2)O; i.e., Ca(3)(OOCC(6)H(4)PO(3))(2).6H(2)O transformed into Ca(HOOCC(6)H(4)PO(3)H)(2) in the presence of 4-carboxyphenylphosphonic acid. On the contrary, Ca(3)(OOCC(6)H(4)PO(3))(2).6H(2)O is formed from Ca(HOOCC(6)H(4)PO(3)H)(2) in the presence of ammonium as a weak base. The structure of Ca(HOOCC(6)H(4)PO(3)H)(2) was solved from X-ray powder diffraction data by an ab initio method using a FOX program. The compound is monoclinic, space group C2/c (No. 15), a = 49.218(3) A, b = 7.7609(4) A, c = 5.4452(3) A, beta = 128.119(3) degrees , and Z = 4. Its structure is one-dimensional with [Ca(2)(HOOCC(6)H(4)PO(3)H)(4)](infinity) ribbons forming basic building blocks. The ribbons are held together by hydrogen bonds between carboxylic groups.  相似文献   

9.
We report the formation of icosahedral B(12)H(8) (+) through ion-molecule reactions of the decaborane ion [B(10)H(x)(+) (x=6-14)] with diborane (B(2)H(6)) molecules in an external quadrupole static attraction ion trap. The hydrogen content n of B(12)H(n)(+) is determined by the analysis of the mass spectrum. The result reveals that B(12)H(8)(+) is the main product. Ab initio calculations indicate that B(12)H(8)(+) preferentially forms an icosahedral structure rather than a quasiplanar structure. The energies of the formation reactions of B(12)H(14)(+) and B(12)H(12)(+) between B(10)H(x)(+) (x=6,8) ions, which are considered to be involved in the formation of B(12)H(n)(+), and a B(2)H(6) molecule are calculated. The calculations of the detachment pathway of H(2) molecules and H atoms from the product ions, B(12)H(14)(+) and B(12)H(12) (+), indicate that the intermediate state has a relatively low energy, enabling the detachment reaction to proceed owing to the sufficient reaction energy. This autodetachment of H(2) accounts for the experimental result that B(12)H(8)(+) is the most abundant product, even though it does not have the lowest energy among B(12)H(n)(+).  相似文献   

10.
We have investigated a microwave-assisted synthesis of 4(3H)-quinazolinones by condensation of anthranilic acid, orthoesters (or formic acid) and substituted anilines,using Keggin-type heteropolyacids (H(3)PW(12)O(40).13H(2)O, H(4)SiW(12)O(40).13H(2)O,H(4)SiMo(12)O(40).13H(2)O or H(3)PMo(12)O(40).13H(2)O) as catalysts. We found that the the use of H(3)PW(12)O(40).13H(2)O acid coupled to microwave irradiation allows a solvent-free, rapid (approximately 13min) and high-yielding reaction.  相似文献   

11.
The molecules Li(3)H and Li(4)H have been identified in mass-spectrometric measurements over solutions of hydrogen in liquid Li, and the gaseous equilibria of the reactions: Li(3)H+Li=Li(2)H+Li(2), Li(3)H+Li(2)=Li(2)H+Li(3), Li(3)H+Li=LiH+Li(3), Li(3)H+LiH=2Li(2)H, and Li(4)H+Li(2)=Li(3)H+Li(3) have been measured. Density functional calculations of Li(n)H molecules (n=3-6) provide structures, vibrational frequencies, ionization energies, and free energy functions of these molecules, and these are used to estimate the enthalpies of these reactions and the atomization energies of Li(3)H (119.4 kcal/mol) and Li(4)H (151.8 kcal/mol).  相似文献   

12.
Head-to-head (H–H) poly(allyl alcohol) (PAA) was prepared by the LiAlH4 reduction of H–H poly(methyl acrylate) obtained from the methylation of alternating copolymer of ethylene with maleic anhydride. H–H poly(allyl acetate) (PAAc) and H–H poly(allyl benzoate) (PABz) were further derived by means of its acylations. All of these three H–H polymers were characterized by IR, NMR, TGA, and PGC measurements. The corresponding head-to-tail (H–T) polymers were also prepared by a similar method from the conventional H–T polymer of methyl acrylate, and characterized to allow comparison with the H–H polymers. The softening temperatures of all H–H polymers were somewhat higher than those of the respective H–T polymers, probably suggesting that the H–H placements increased the stiffness of the polymers. Unlike poly(acrylic esters) reported previously, these H–H allyl polymers were found to degrade at temperatures slightly lower than the H–T polymers. On pyrolysis at 430°C, both PAAc and PABz were also observed to release predominantly acetic acid and benzoic acid, respectively, and small quantities of the corresponding allyl ester monomers. The molar ratios of acid to ester were substantially larger for H–H polymers.  相似文献   

13.
The heptadentate Schiff base H(3)L can react with zinc acetate to form the discrete dinuclear complex Zn(2)L(OAc)(H(2)O), 1.H(2)O. The reaction of 1.H(2)O with NMe(4)OH.5H(2)O both in air and under an argon stream has been investigated. On one hand, this reaction in air yields the tetranuclear complex (Zn(2)L)(2)(CO(3))(H(2)O)(6), 2.5H(2)O, by spontaneous absorption of adventitious carbon dioxide. This process can be reverted in an acetic acid medium, whereas the treatment of 2.5H(2)O with methanoic acid yields crystals of [Zn(2)L(HCOO)].0.5MeCN.1.25MeOH.2H(2)O, 3.0.5MeCN.1.25MeOH.2H(2)O. On the other hand, the interaction under an argon atmosphere of 1.H(2)O with NMe(4)OH.5H(2)O in methanol allows the isolation of the dinuclear complex Zn(2)L(OMe)(H(2)O)(4), 4.4H(2)O. Recrystallisations of 1.H(2)O, 2.5H(2)O and 4.4H(2)O, in different solvents, yielded single crystals of 1.MeCN.2.5H(2)O, 2.4MeOH and 4.3MeOH.H(2)O, respectively. The crystal structure of 2.4MeOH can be understood as resulting from an unusual asymmetric tetranuclear self-assembly from two dinuclear units, and shows three different geometries around the four zinc atoms.  相似文献   

14.
The crystal structures of (H(3)C)(2)O, H(2)SiCl(2) and an adduct of these were determined by low-temperature X-ray crystallography on crystals grown in situ at low temperatures on a diffractometer. The adduct of (H(3)C)(2)O and H(2)SiCl(2) has the composition [(H(3)C)(2)O.H(2)SiCl(2)](2) and contains a four-membered Si(2)O(2) ring, with the Cl atoms pointing to the outside and the Si-H functions pointing to the inner side of the ring. The Si(2)O(2) ring has two longer and two shorter SiO bonds and thus deviates from a square. Quantum chemical calculations give a geometry for [(H(3)C)(2)O.H(2)SiCl(2)](2) which has D(2h) symmetry and allow to obtain an estimate for the adduct formation energies, which are -13.4 kJ mol(-1) for the formation of the mono adduct [(H(3)C)(2)O + H(2)SiCl(2)-->(H(3)C)(2)O.H(2)SiCl(2)], -14.4 kJ mol(-1) for the dimerization of two mono adducts [(H(3)C)(2)O.H(2)SiCl(2)-->[(H(3)C)(2)O.H(2)SiCl(2)](2)] and -41.2 kJ mol(-1) for the reaction 2 (H(3)C)(2)O + 2 H(2)SiCl(2)-->[(H(3)C)(2)O.H(2)SiCl(2)](2). The results are used to rationalize the strongly reduced reactivity of H(2)SiCl(2) towards nucleophilic substitution reactions in (H(3)C)(2)O at low temperatures.  相似文献   

15.
The Al(3)H(9) and Al(3)H(7) potential energy surfaces were explored using quantum chemistry calculations to investigate the H(2) loss mechanism from Al(3)H(9), which provide new insights into hydrogen production from bulk alane, [AlH(3)](x), a possible energy storage material. We present results of B3LYP/6-311++G(d,p) calculations for the various Al(3)H(9) and Al(3)H(7) optimized local minima and transition state structures along with some reaction pathways for their interconversion. We find the energy for Al(3)H(9) decomposition into Al(2)H(6) and AlH(3) is slightly lower than that for H(2) loss and Al(3)H(7) formation, but the calculations show that H(2) loss from Al(3)H(9) is a lower energy process than for losing hydrogen from either Al(2)H(6) or AlH(3). We found four transition state structures and reaction pathways for Al(3)H(9) → Al(3)H(7) + H(2), where the lowest energy activation barrier is around 25-73 kJ/mol greater than the experimental value for H(2) loss from bulk alane. Intrinsic reaction coordinate calculations show that the H(2) loss pathway involves considerable rearrangement of the H atom positions around a single Al center. Three of the pathways start with the formation of an AlH(3) moiety, which then enables a terminal H on the AlH(3) to get within 1.1 to 1.2 ? of a nearby bridging H atom. The bridging and terminal H atoms eventually combine to form H(2) and leave Al(3)H(9). One implication of these H(2) loss reaction pathways is that, since the H atoms in bulk alanes are all at bridging positions, if a similar H(2) loss mechanism were to apply to bulk alane, then H(2) loss would most likely occur on the bulk alane surface or at a defect site where there should be more terminal H atoms available for reaction with nearby bridging H atoms.  相似文献   

16.
We developed a new assignment technique of tryptophan residues using pulsed field gradient TOCSY–ROESY (PFG‐TORO) and pulsed field gradient TOCSY–ROESY–TOCSY (PFG‐TOROTO) techniques in water. Connectivity from βH to ζ2H (H‐7) via ε1H (H‐1) and δ1H (H‐2) in the TORO spectrum and from βH to ζ3H (H‐5) and η2H (H‐6) via ε1H (H‐1) and δ1H (H‐2) in the TOROTO spectrum could be able to assign each of the protons of the indole rings. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
Ab initio calculations of the potential energy surface for the C(2)(X(1)Sigma(g)(+)) + CH(3)CCH(X(1)A(1)) reaction have been carried at the G2M level of theory. The calculations show that the dicarbon molecule in the ground singlet electronic state can add to methylacetylene without a barrier producing a three-member or a four-member ring intermediate, which can rapidly rearrange to the most stable H(3)CCCCCH isomer on the C(5)H(4) singlet surface. This isomer can then lose a hydrogen atom (H) or molecular hydrogen (H(2)) from the CH(3) group with the formation of H(2)CCCCCH and HCCCCCH, respectively. Alternatively, H atom migrations and three-member-ring closure/opening rearrangements followed by H and H(2) losses can lead to other isomers of the C(5)H(3) and C(5)H(2) species. According to the calculated energetics, the C(2)(X(1)Sigma(g)(+)) + CH(3)CCH reaction is likely to be a major source of the C(5)H(3) radicals (in particular, the most stable H(2)CCCCCH and HCCCHCCH isomers, which are relevant to the formation of benzene through the reactions with CH(3)). Among heavy-fragment product channels, only C(3)H(3) + C(2)H and c-C(3)H(2) + C(2)H(2) might compete with C(5)H(3) + H and C(5)H(2) + H(2). RRKM calculations of reaction rate constants and product branching ratios depending on the reactive collision energy showed that the major reaction products are expected to be H(2)CCCCCH + H (64-66%) and HCCCHCCH + H (34-30%), with minor contributions from HCCCCCH + H(2) (1-2%), HCCCHCC + H(2) (up to 1%), C(3)H(3) + C(2)H (up to 1%), and c-C(3)H(2) + C(2)H(2) (up to 0.1%) if the energy randomization is complete. The calculations also indicate that the C(2)(X(1)Sigma(g)(+)) + CH(3)CCH(X(1)A(1)) reaction can proceed by direct H-abstraction of a methyl hydrogen to form C(3)H(3) + C(2)H almost without a barrier.  相似文献   

18.
The ionization energies (IEs) and heats of formation (ΔH°(f0)/ΔH°(f298)) for thiophene (C(4)H(4)S), furan (C(4)H(4)O), pyrrole (C(4)H(4)NH), 1,3-cyclopentadiene (C(4)H(4)CH(2)), and borole (C(4)H(4)BH) have been calculated by the wave function-based ab initio CCSD(T)/CBS approach, which involves the approximation to the complete basis set (CBS) limit at the coupled-cluster level with single and double excitations plus a quasi-perturbative triple excitation [CCSD(T)]. Where appropriate, the zero-point vibrational energy correction (ZPVE), the core-valence electronic correction (CV), and the scalar relativistic effect (SR) are included in these calculations. The respective CCSD(T)/CBS predictions for C(4)H(4)S, C(4)H(4)O, C(4)H(4)NH, and C(4)H(4)CH(2), being 8.888, 8.897, 8.222, and 8.582 eV, are in excellent agreement with the experimental values obtained from previous photoelectron and photoion measurements. The ΔH°(f0)/ΔH°(f298) values for the aforementioned molecules and their corresponding cations have also been predicted by the CCSD(T)/CBS method, and the results are compared with the available experimental data. The comparisons between the CCSD(T)/CBS predictions and the experimental values for C(4)H(4)S, C(4)H(4)O, C(4)H(4)NH, and C(4)H(4)CH(2) suggest that the CCSD(T)/CBS procedure is capable of predicting reliable IE values for five-membered-ring molecules with an uncertainty of ±13 meV. In view of the excellent agreements between the CCSD(T)/CBS predictions and the experimental values for C(4)H(4)S, C(4)H(4)O, C(4)H(4)NH, and C(4)H(4)CH(2), the similar CCSD(T)/CBS IE and ΔH°(f0)/ΔH°(f298) predictions for C(4)H(4)BH, whose thermochemical data are not readily available due to its reactive nature, should constitute a reliable data set. The CCSD(T)/CBS IE(C(4)H(4)BH) value is 8.868 eV, and ΔH°(f0)/ΔH°(f298) values for C(4)H(4)BH and C(4)H(4)BH(+) are 269.5/258.6 and 1125.1/1114.6 kJ/mol, respectively. The highest occupied molecular orbitals (HOMO) of C(4)H(4)S, C(4)H(4)O, C(4)H(4)NH, C(4)H(4)CH(2), and C(4)H(4)BH have also been studied by the natural bond orbital (NBO) method, and the extent of π-electron delocalization in these five-membered rings are discussed in correlation with their molecular structures and orbitals.  相似文献   

19.
The ab initio/Rice-Ramsperger-Kassel-Marcus (RRKM) approach has been applied to investigate the photodissociation mechanism of benzene at various wavelengths upon absorption of one or two UV photons followed by internal conversion into the ground electronic state. Reaction pathways leading to various decomposition products have been mapped out at the G2M level and then the RRKM and microcanonical variational transition state theories have been applied to compute rate constants for individual reaction steps. Relative product yields (branching ratios) for C(6)H(5)+H, C(6)H(4)+H(2), C(4)H(4)+C(2)H(2), C(4)H(2)+C(2)H(4), C(3)H(3)+C(3)H(3), C(5)H(3)+CH(3), and C(4)H(3)+C(2)H(3) have been calculated subsequently using both numerical integration of kinetic master equations and the steady-state approach. The results show that upon absorption of a 248 nm photon dissociation is too slow to be observable in molecular beam experiments. In photodissociation at 193 nm, the dominant dissociation channel is H atom elimination (99.6%) and the minor reaction channel is H(2) elimination, with the branching ratio of only 0.4%. The calculated lifetime of benzene at 193 nm is about 11 micros, in excellent agreement with the experimental value of 10 micros. At 157 nm, the H loss remains the dominant channel but its branching ratio decreases to 97.5%, while that for H(2) elimination increases to 2.1%. The other channels leading to C(3)H(3)+C(3)H(3), C(5)H(3)+CH(3), C(4)H(4)+C(2)H(2), and C(4)H(3)+C(2)H(3) play insignificant role but might be observed. For photodissociation upon absorption of two UV photons occurring through the neutral "hot" benzene mechanism excluding dissociative ionization, we predict that the C(6)H(5)+H channel should be less dominant, while the contribution of C(6)H(4)+H(2) and the C(3)H(3)+C(3)H(3), CH(3)+C(5)H(3), and C(4)H(3)+C(2)H(3) radical channels should significantly increase.  相似文献   

20.
The oxomolybdenum-arsonate system was investigated under hydrothermal conditions in the presence of charge-compensating copper(II)-organonitrogen complex cations as secondary building blocks. A series of materials of the Mo/O/As/Cu/ligand family has been prepared and structurally characterized. The architectures of the products reflect the identity of the arsonate component and the organonitrogen ligand, as well as the reaction conditions. The structural versatility of this emerging class of compounds is manifested by the one-dimensional structures of [[Cu(o-phen)(H(2)O)(2)](2)Mo(6)O(18)(O(3)AsOH)(2)] (1), [[Cu(terpy)](2)Mo(4)O(13)H(AsO(4))(2)].2H(2)O (2.2H(2)O), [[Cu(2,2'-bpy)(H(2)O)](2)Mo(6)O(18)(O(3)AsC(6)H(5))(2)].2H(2)O (4.2H(2)O), and [[Cu(o-phen)(H(2)O)](2)[Mo(6)O(18)(O(3)AsC(6)H(5))(2)]].4H(2)O (5.4H(2)O), by the two-dimensional materials [[Cu(2)(tpyprz)(H(2)O)(2)]Mo(6)O(18)(O(3)AsOH)(2)].2H(2)O (3.2H(2)O), [[Cu(terpy)](2)Mo(6)O(18)(O(3)AsC(6)H(5))(2)].H(2)O (6.H(2)O), and [[Cu(2)(tpyprz)]Mo(6)O(18)(O(3)AsC(6)H(5))(2)].2H(2)O (7.2H(2)O), and the molecular clusters [[Cu(2,2'-bpy)(2)](2)Mo(12)O(34)(O(3)AsC(6)H(5))(4)].2.35H(2)O (8.2.35H(2)O) and [Cu(o-phen)(H(2)O)(3)][Cu(o-phen)(2)Mo(12)O(34) (O(3)AsC(6)H(5))(4)].3H(2)O (9.3H(2)O).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号