首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
采用变量替换,构建了一组加权平均值参数不等式,对Popovic不等式与Rado不等式进行了加权推广,加细了加权算术-几何-调和平均值不等式.  相似文献   

2.
对加权幂平均不等式的加强作了全面的研究,推广了一个加强的加权算术-几何不等式.  相似文献   

3.
课题:均值不等式的应用适用年级:高三年级学期:学期2006-2007学年度第一学期要点提示如果a,b∈R ,那么a b/2叫做这两个正数的算术平均数,ab~(1/2)叫做这两个正数的几何平均数.关于这两种平均数的大小关系,有a b/2≥ab~(1/2),即两个正数  相似文献   

4.
本文得到如下关于三个正数的算术平均数和几何平均数的一个双边不等式:  相似文献   

5.
给出几何-算术均值不等式的一个推广,实例展示其应用,说明与约束极值原理相关的一些问题也可以通过推广的几何-算术均值不等式加以解决.  相似文献   

6.
利用一组新的标量不等式,得到关于矩阵的加权几何均值不等式和矩阵Hilbert-Schmidt范数不等式.新不等式改进了相关文献中的结果.  相似文献   

7.
黄丽生 《数学通讯》2008,(11):14-16
定理如果a,b是正数,那么a+b/2≥√ab(当且仅当a=b时取“=”).这个定理适用的范围:a,b∈R^+;我们称a+b/2为a,b的算术平均数,称√ab为a,b的几何平均数。即:两个正数的算术平均数不小于它们的几何平均数.此不等式常称为均值不等式.  相似文献   

8.
在部编高中数学课本第三册中第63页上,给出一个结论:“n个(n是大于1的整数)正数的算术平均数不小于它们的几何平均数”.这就是著名的哥西不等式  相似文献   

9.
不等式     
一、考试要求1、掌握不等式的性质及其证明,掌握证明不等式的几种常用方法,掌握两个(或三个)正数的算术平均数不小于它们的几何平均数这一定理,并能运用上述性质、定理和方法解决一些问题。2、在熟练掌握一元一次不等式(组)、一元二次不等式的解法的基础上初步掌...  相似文献   

10.
数学科考试要求释疑(待续)晨旭五、不等式(1)掌握不等式的性质及其证明,掌握证明不等式的几种常用方法,掌握两个(或三个)正数的算术平均数不小于它们的几何平均数这一定理,并能运用上述性质、定理和方法解决一些问题.(2)在熟练掌握一元一次不等式(组)、一...  相似文献   

11.
By virtue of Cauchy’s integral formula in the theory of complex functions,the authors establish an integral representation for the weighted geometric mean,apply this newly established integral representation to show that the weighted geometric mean is a complete Bernstein function,and find a new proof of the well-known weighted arithmetic-geometric mean inequality.  相似文献   

12.
We give a matrix version of the scalar inequality f(a + b) ? f(a) + f(b) for positive concave functions f on [0, ∞). We show that Choi’s inequality for positive unital maps and operator convex functions remains valid for monotone convex functions at the cost of unitary congruences. Some inequalities for log-convex functions are presented and a new arithmetic-geometric mean inequality for positive matrices is given. We also point out a simple proof of the Bhatia-Kittaneh arithmetic-geometric mean inequality.  相似文献   

13.
In the paper, by the Cauchy integral formula in the theory of complex functions, an integral representation for the reciprocal of the weighted geometric mean of many positive numbers is established. As a result, the reciprocal of the weighted geometric mean of many positive numbers is verified to be a Stieltjes function and, consequently, a (logarithmically) completely monotonic function. Finally, as applications of the integral representation, in the form of remarks, several integral formulas for a kind of improper integrals are derived, an alternative proof of the famous inequality between the weighted arithmetic and geometric means is supplied, and two explicit formulas for the large Schröder numbers are discovered.  相似文献   

14.
In this paper, we establish two extensions of Weierstrass's inequality involving symmetric functions by means of the theory of majorization, and give an interesting sharpness of Weierstrass's inequality by using the arithmetic-geometric mean inequality. Furthermore, we apply these results to improve a well-known inequality and deduce some new inequalities.  相似文献   

15.
We generalize the arithmetic-geometric mean inequality to a new class of polynomials and give a combinatorial application. The work for this research was supported by the Max Kade Foundation.  相似文献   

16.
Several integrals which are related to the arithmetic-geometric mean are developed and proved in a very elementary way. These results can be used to prove a known inequality which relates this mean to the logarithmic mean.  相似文献   

17.
This note presents a proof of the arithmetic-geometric mean inequality that uses basic facts about the upper half-plane model of hyperbolic plane geometry. This material could find use as enrichment material in any model-oriented course on the classical geometries.  相似文献   

18.
In the eighteenth century, Landen, Lagrange and Gauss studied a function of two positive real numbers that has become known as the arithmetic-geometric mean (AGM). In the nineteenth century, Borchardt generalized the AGM to a function of any 2n(n = 1,2,3,…) positive real numbers. In this paper, we generalize the AGM to a function of any even number of positive real numbers. If M(a, b) is the original AGM then M(a, b) is concave in the pair (a, b) of positive numbers and log M(eα, eβ) is convex in the pair (α,β) of real numbers; all our generalizations of the AGM behave similarly. We generalize this analysis extensively.  相似文献   

19.
以两个正数的等差中项、等比中项及调和中项为基础,通过极限方法引进等差-等比中项、调和-等比中项及等差-调和中项的概念,并导出它们的求法.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号