首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The reaction of methacryloyl chloride with 5‐aminotetrazole gave the polymerizable methacrylamide derivative 5‐(methacrylamido)tetrazole ( 4 ) in one step. The monomer had an acidic tetrazole group with a pKa value of 4.50 ± 0.01 in water methanol (2:1). Radical polymerization proceeded smoothly in dimethyl formamide or, after the conversion of monomer 4 into sodium salt 4‐Na , even in water. A superabsorbent polymer gel was obtained by the copolymerization of 4‐Na and 0.08 mol % N,N′‐methylenebisacrylamide. Its water absorbency was about 200 g of water/g of polymer, although the extractable sol content of the gel turned out to be high. The consumption of 4‐Na and acrylamide (as a model compound for the crosslinker) during a radical polymerization at 57 °C in D2O was followed by 1H NMR spectroscopy. Fitting the changes in the monomer concentration to the integrated form of the copolymerization equation gave the reactivity ratios r 4‐Na = 1.10 ± 0.05 and racrylamide = 0.45 ± 0.02, which did not differ much from those of an ideal copolymerization. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4333–4343, 2002  相似文献   

2.
CO2‐switchable polystyrene (PS), poly(methyl methacrylate) (PMMA), and poly(butyl methacrylate) (PBMA) latexes were prepared via surfactant‐free emulsion polymerization (SFEP) under a CO2 atmosphere, employing N‐[3‐(dimethylamino)propyl]methacrylamide (DMAPMAm) as a CO2‐switchable, water‐soluble, and hydrolytically stable comonomer. The conversion of the SFEP of styrene reaches >95% in less than 5 h. The resulting latexes have near monodisperse particles (PDI ≤ 0.05), as confirmed by DLS and TEM. The latexes could be destabilized by bubbling nitrogen (N2) and heating at 65 °C for 30 min, and easily redispersed by only bubbling CO2 for a short time without using sonication. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 1059–1066  相似文献   

3.
In this study, we grafted water‐soluble biocompatible polymer, poly(N‐(2‐hydroxypropyl)methacrylamide) (PHPMA), onto the surface of multi‐walled carbon nanotubes (MWNTs). The reversible addition‐fragmentation chain transfer (RAFT) agents, dithioesters, were successfully immobilized onto the surface of MWNTs first, PHPMA chains were then subsequently grafted onto MWNTs via RAFT polymerization by using dithioesters immobilized on MWNTs as RAFT agent. FTIR, XPS, 1H NMR, Raman and TGA were used to characterize the resulting products and to determine the content of water‐soluble PHPMA chains in the product. The MWNTs grafted with PHPMA chains have good solubility in distilled water, PBS buffer, and methanol. TEM images of the samples provide direct evidence for the formation of a nanostructure that MWNTs coated with polymer layer. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2419–2427, 2006  相似文献   

4.
Graft polymerization initiated by diperiodatocuprate(III) complex (Cu(III)) initiator was found to be an effective and convenient method for graft polymerization of vinyl monomers onto macroporous polyacrylamide gels, the so‐called cryogels (pAAm‐cryogels). The effect of time, temperature, monomer and initiator concentration during the graft polymerization in aqueous and aqueous‐organic media was studied. The graft polymerization of water‐soluble monomers as [2‐(methacryloyloxy)ethyl]‐trimethylammonium chloride, 2‐hydroxyethyl methacrylate, N‐isopropylacrylamide, and N,N‐dimethylacrylamide proceeds with higher grafting yield in aqueous medium, as compared with that in aqueous‐organic media. Graft polymerization in aqueous‐organic media such as water–DMSO solutions allows grafting of water‐insoluble monomers such as glycidyl methacrylate and Ntert‐butylacrylamide with high grafting degrees of 100 and 410%, respectively. It was found that the deposition of initiator on the pore surface of cryogels promoted graft polymerization by facilitating the formation of the redox couple Cu(III)‐acrylamide group. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1952–1963, 2006  相似文献   

5.
Polystyrene microlatexes have been prepared by conventional emulsion polymerization with a novel amphiphilic water‐soluble ABA triblock copolymer, poly[2‐(dimethylamino)ethyl methacrylate]15b‐poly(propylene oxide)36b‐poly[2‐(dimethyl‐amino)ethyl methacrylate]15 (PDMAEMA15‐PPO36‐PDMAEMA15), as a polycationic emulsifier under acidic or neutral conditions. The ABA triblock copolymer was developed by oxyanion‐initiated polymerization in our laboratory. In this study, it acted well both as a polycationic polymeric surfactant to form block copolymeric micelles for emulsion polymerization and as a stabilizer to be anchored into the polystyrene microlatex or adsorbed onto its surface. The results obtained with various copolymer concentrations and different pH media showed that microlatex diameters decreased remarkably with increased concentration of this ABA triblock copolymeric emulsifier, but were not as much affected by the pH of media within the experimental range of 3.4–7.0. The observed difference of the particle sizes from transmission electron microscopy and dynamic light scattering measurements is discussed in terms of the effect of the absorbed surfactants and their electrical double layers. This difference has led to the formation of a cationic polyelectrolyte fringe on the surface of microspheres. The final microlatexes were characterized with respect to total conversion, particle diameter, and particle size distribution as well as colloidal stability. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3734–3742, 2002  相似文献   

6.
Poly(N‐isopropylacrylamide) (PNIPAAm)‐based microspheres were prepared by precipitation and dispersion polymerization. The effects of several reaction parameters, such as the type and concentration of the crosslinker (N,N′‐methylenebisacrylamide or ethylene dimethacrylate), medium polarity, concentration of the monomer and initiator, and polymerization temperature, on the properties were examined. The hydrogel microspheres were characterized in terms of their chemical structure, size and size distribution, and morphological and temperature‐induced swelling properties. A decrease in the particle size was observed with increasing polarity of the reaction medium or increasing concentration of poly(N‐vinylpyrrolidone) as a stabilizer in the dispersion polymerization. The higher the content was of the crosslinking agent, the lower the swelling ratio was. Too much crosslinker gave unstable dispersions. Although the solvency of the precipitation polymerization mixture controlled the PNIPAAm microsphere size in the range of 0.2–1 μm, a micrometer range was obtained in the Shellvis 50 and Kraton G 1650 stabilized dispersion polymerizations of N‐isopropylacrylamide in toluene/heptane. Typically, the particles had fairly narrow size distributions. Copolymerization with the functional glycidyl methacrylate monomer afforded microspheres with reactive oxirane groups. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 968–982, 2006  相似文献   

7.
A water‐soluble comonomer, N‐isopropylacrylamide (NIPAM), and an oil‐soluble crosslinker, divinylbenzene (DVB), have been combined in a system for the synthesis of nanocapsules with crosslinked shells through interfacial miniemulsion polymerization by encapsulating a liquid nonsolvating hydrocarbon. Oligomers of poly(N‐isopropylacrylamide) (PNIPAM) were dehydrated and separated from the aqueous phase and were adsorbed by the nanodroplets or latex particles and then anchored at their interfaces by means of a crosslinking reaction. Nanocapsules were then formed through encapsulation of the hydrocarbon by the newly produced polymers at the interfaces of the droplets. The crosslinked structure gradually grew to stabilize the shell morphology. The incorporation of NIPAM into the shell copolymers has been verified by FTIR and solid‐state 13C NMR data. The fact that the number of nanocapsules increases with increasing amounts of DVB and NIPAM supports the formation of nanocapsules following interfacial (co)polymerization. Therefore, a mechanism for the formation of nanocapsules through interfacial (co)polymerization induced by NIPAM and DVB is proposed. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1522–1534, 2009  相似文献   

8.
Poly(p‐nitrophenylacrylate‐co‐methacrylamide) and poly(p‐Nitrophenylacrylate‐coN,N′‐isopropylacrylamide) reactive microgels were synthesized by precipitation polymerization. The process was followed qualitatively by infrared spectroscopy (ATR‐FTIR) and microgels composition was determined by nuclear magnetic resonance (1H NMR). Scanning electron microscopy of obtained colloidal particles showed strictly spherical morphologies with a moderate polydispersity. The average hydrodynamic particle diameter and particle size distributions were measured by quasi‐elastic light scattering and the particle size distributions obtained ranged from 100 to 600 nm. Several synthetic parameters affect the particle size of these materials and thus, indirectly, their properties and future applications. In this article, we report the influence of different polymerization reaction conditions in the final microgel dimensions. For example, we observed that the different solvent‐comonomer affinity induced a significant change in swollen particle size of the copolymeric microgels. On the other hand, the crosslinking density limited the particle sizes, but an excess of crosslinker content in the reaction mixture resulted in the opposite effect. Finally, we also studied the influence of initiator content in the mean particle size. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3833–3842, 2007  相似文献   

9.
The atom transfer radical polymerization (ATRP) technique using the copper halide/ N,N′,N′,N″,N″‐pentamethyldiethylenetriamine complex was applied to the graft polymerization of methyl methacrylate and methyl acrylate on the uniform polystyrene (PS) seed particles and formed novel core‐shell particles. The core was submicron crosslinked PS particles that were prepared via emulsifier‐free emulsion polymerization. The crosslinked PS particles obtained were transferred into the organic phase (tetrahydrofuran), and surface modification using the chloromethylation method was performed. Then, the modified seed PS particles were used to initiate ATRP to prepare a controlled poly(methyl methacrylate) (PMMA) and poly(methyl acrylate) (PMA) shell. The final core‐shell particles were characterized using Fourier transform infrared spectroscopy, nuclear magnetic resonance, scanning electron microscopy, thermogravimetric analysis, and elementary analysis. The grafting polymerization was conducted successfully on the surface of modified crosslinked PS particles, and the shell thickness and weight ratio (PMMA and PMA) of the particles were calculated. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 892–900, 2002; DOI 10.1002/pola.10160  相似文献   

10.
The synthesis of well‐defined carboxylic acid‐functionalized glycopolymers prepared via one‐step postpolymerization modification of poly(N‐[3‐aminopropyl] methacrylamide) (PAPMA), a water‐soluble primary amine methacrylamide, in aqueous medium is demonstrated. PAPMA was first polymerized via aqueous reversible addition‐fragmentation chain transfer polymerization in aqueous buffer using 4‐cyanopentanoic acid dithiobenzoate as the chain transfer agent and 4,4′‐azobis(4‐cyanovaleric acid) (V‐501) as the initiator at 70 °C. The resulting well‐defined PAPMA was then conjugated with D ‐glucuronic acid sodium salt through reductive amination in alkaline medium (pH 8.5) at 45 °C. The successful bioconjugation was proven through proton (1H) and carbon (13C) nuclear magnetic resonance spectroscopy and matrix‐assisted laser desorption/ionization time of flight mass spectrometry analysis, which indicated near quantitative conversion. A similar bioconjugation reaction was conducted with poly(2‐aminoethyl methacrylate) (PAEMA) and poly(2‐aminoethyl methacrylate‐b‐poly(N‐[2‐hydroxypropyl]methacrylamide) (PAEMA‐b‐PHPMA). For the PAEMA homopolymers and block copolymers, however, lower conversion was obtained, most likely because of degradation reactions of PAEMA in alkaline medium. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3052–3061, 2010  相似文献   

11.
Amphiphilic polymer conetworks consisting of hydrophilic poly[2‐(dimethylamino)ethyl methacrylate], poly(N‐isopropylacrylamide), or poly(N,N‐dimethylacrylamide) and hydrophobic polyisobutylene chains were synthesized with a novel two‐step procedure. In the first step, a methacrylate‐multifunctional polyisobutylene crosslinker was prepared by the cationic copolymerization of isobutylene with 3‐isopropenyl‐α,α‐dimethylbenzyl isocyanate. In the second step, the methacrylate‐multifunctional polyisobutylene crosslinker, with a number‐average molecular weight of 8200 and an average functionality of approximately 4 per chain, was copolymerized radically with 2‐(dimethylamino)ethyl methacrylate, N‐isopropylacrylamide, or N,N‐dimethylacrylamide into transparent amphiphilic conetworks containing 42–47 mol % hydrophilic monomer. The synthesized conetworks were characterized with solid‐state 13C NMR spectroscopy and differential scanning calorimetry. The amphiphilic nature of the conetworks was proved by swelling in both water and n‐heptane. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6378–6384, 2006  相似文献   

12.
Novel hydrophilic and thermosensitive poly(N,N‐diethylacrylamide‐co‐2‐hydroxyethyl methacrylate) resins were prepared by inverse suspension polymerization with N,N′‐methylenebis(acrylamide) as a crosslinker. The effects of chemical composition and degree of crosslinking on the polymerization were investigated. The polymer resins were characterized by elemental analysis, infrared spectroscopy, differential scanning calorimetry, and scanning electron microscopy. The thermosensitivity of the crosslinked resins was demonstrated by their lower critical swelling temperatures. The swelling and deswelling volume of the beads in water varied depending on the molar fraction of the N,N‐diethylacrylamide. These beads swelled extensively in a variety of common solvents. They had high loadings of functional hydroxyl groups and were used as supports in the solid‐phase synthesis of an oligopeptide. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1681–1690, 2003  相似文献   

13.
N‐(1‐Phenyldibenzosuberyl)methacrylamide (PDBSMAM) and its derivative N‐[(4‐butylphenyl)dibenzosuberyl]methacrylamide (BuPDBSMAM) were synthesized and polymerized in the presence of (+)‐ and (?)‐menthols at different temperatures. The tacticity of the polymers was estimated to be nearly 100% isotactic from the 1H NMR spectra of polymethacrylamides derived in D2SO4. Poly(PDBSMAM) was not soluble in the common organic solvents, and its circular dichroism spectrum in the solid state was similar to that of the optically active poly(1‐phenyldibenzosuberyl methacrylate) (poly(PDBSMA)) with a prevailing one‐handed helicity, indicating that the poly(PDBSMAM) also has a similar helicity. Poly(BuPDBSMAM) was optically active and soluble in THF and chloroform. Its optical activity was much higher than that of the poly[N‐(triphenylmethayl)methacrylamide], suggesting that one‐handed helicity may be more efficiently induced on the poly(BuPDBSMAM). The copolymerization of BuPDBSMAM with a small amount of optically active N‐[(R)‐(+)‐1‐(1‐naphthyl)ethyl]methacrylamide, particularly in the presence of (?)‐menthol, produced a polymer with a high optical activity. The prevailing helicity may also be efficiently induced. The chiroptical properties of the obtained polymers were studied in detail. The chiral recognition by the polymers was also evaluated. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1304–1315, 2007  相似文献   

14.
A nanosphere was formed from a temperature‐responsive random copolymer of (N,N‐dimethylamino)ethyl methacrylate (DMAEMA) and ethyl acrylamide (EAAm) without a crosslinker. When the copolymerization was performed in a water/ethanol solvent mixture (90/10 v/v %) above the lower critical‐solution temperature of poly(DMAEMA‐co‐EAAm), the nanosphere was formed with the propagation of copolymerization. Atomic force microscopy analysis and dynamic light scattering both showed the formation of nanosphere and the size was decreased as the EAAm content increased in the copolymer. To illuminate this nanosphere formation phenomena, molecular dynamic simulations were performed with model polymer solutions. According to the analysis of the simulation trajectory, the ethyl groups of ethanol bind to the hydrophobic sites of poly(DMAEMA) or poly(DMAEMA‐co‐EAAm), and water molecules can bind preferentially to CO groups that are abundant on the surface of the core, which is composed of oligomer and ethanol. This may enable the polymerization to proceed within the core, which is transformed into nanosphere. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 594–600, 2001  相似文献   

15.
A very straightforward approach was developed to synthesize pegylated thermoresponsive core‐shell nanoparticles in a minimum of steps, directly in water. It is based on RAFT‐controlled radical crosslinking copolymerization of N,N‐diethylacrylamide (DEAAm) and N,N′‐methylene bisacrylamide (MBA) in aqueous dispersion polymerization. Because DEAAm is water‐soluble and poly(N,N‐diethylacrylamide) (PDEAAm) exhibits a lower critical solution temperature at 32 °C, the initial medium was homogeneous, whereas the polymer formed a separate phase at the reaction temperature. The first macroRAFT agent was a surface‐active trithiocarbonate based on a hydrophilic poly(ethylene oxide) block and a hydrophobic dodecyl chain. It was further extented with N,N‐dimethylacrylamide (DMAAm) to target macroRAFT agents with increasing chain length. All macroRAFT agents provided excellent control over the aqueous dispersion homopolymerization of DEAAm. When they were used in the radical crosslinking copolymerization of DEAAm and MBA, the stability and size of the resulting gel particles were found to depend strongly on the chain length of the macroRAFT agent, on the concentrations of both the monomer and the crosslinker, and on the process (one step or two steps). The best‐suited experimental conditions to reach thermosensitive hydrogels with nanometric size and well‐defined surface properties were determined. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2373–2390, 2009  相似文献   

16.
In this work, semi‐interpenetrating gels of poly(N‐isopropyl acrylamide) and methylcellulose were successfully synthesized by using the Frontal Polymerization (FP) technique. The gels were obtained in the presence of dimethyl sulfoxide and trihexyltetradecylphosphonium persulfate, as polymerization solvent and radical initiator, respectively, hence avoiding the formation of bubbles during polymerization. Then, some of the gels containing dimethyl sulfoxide were thoroughly washed with water, hence obtaining the corresponding hydrogels. The effects of the ratio between poly(N‐isopropyl acrylamide) and methylcellulose, the amount of crosslinker and solvent medium (i.e., dimethyl sulfoxide and water) were thoroughly studied, assessing the influence of temperature and velocity of FP fronts on the glass transition temperature values (dried samples), on the swelling behavior and on the dynamic‐mechanical properties (gels swollen both in water and dimethyl sulfoxide). © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 437–443  相似文献   

17.
Novel poly(methacrylamide‐co‐2‐acrylamido‐2‐methyl‐ 1‐propanesulfonic acid) (poly(MAAm‐co‐AMPS)) hydrogels were synthesized by free radical polymerization of methacrylamide (MAAm) and 2‐acrylamido‐2‐methyl‐1‐propanesulfonic acid (AMPS) in deionized water at 60 °C by using ammonium peroxydisulfate (APS), N,N′‐methylenebisacrylamide (MBAAm) and N,N,N′,N′‐tetramethylethylenediamine (TEMED) as initiator, crosslinker, and activator, respectively. To investigate the effects of feed content on the pH‐ and temperature‐dependent swelling behavior of poly(MAAm‐co‐AMPS), molar ratio of MAAm to AMPS in feed was varied from 90/10 to 10/90. Structural characterization of gels was performed by Fourier transform infrared (FTIR) spectroscopy using attenuated total reflectance (ATR) technique. Thermal and morphological characterizations of gels were performed by thermogravimetric analysis (TGA) and scanning electron microscopy (SEM), respectively. Although an apparent pH‐sensitivity was not observed for the poly(MAAm‐co‐AMPS) gels during the swelling in different buffer solutions, their temperature‐sensitivity became more evident with the increase in AMPS content of copolymer. Thermal stability of poly(MAAm‐co‐AMPS) gels increased with MAAm content. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   

18.
To prepare water‐soluble, syndiotacticity‐rich poly(vinyl alcohol) (PVA) microfibrils for various industrial applications, we synthesized syndiotacticity‐rich, low molecular weight PVA by the solution polymerization of vinyl pivalate (VPi) in tetrahydrofuran (THF) at low temperatures with 2,2′‐azobis(2,4‐dimethylvaleronitrile) (ADMVN) as an initiator and successive saponification of poly(vinyl pivalate) (PVPi). Effects of the initiator and monomer concentrations and the polymerization temperature were investigated in terms of the polymerization behaviors and molecular structures of PVPi and the corresponding syndiotacticity‐rich PVA. The polymerization rate of VPi in THF was proportional to the 0.91 power of the ADMVN concentration, indicating the heterogeneous nature of THF polymerization. The low‐temperature solution polymerization of VPi in THF with ADMVN proved to be successful in obtaining water‐soluble PVA with a number‐average degree of polymerization (Pn) of 300–900, a syndiotactic dyad content of 60–63%, and an ultimate conversion of VPi into PVPi of over 75%. Despite the low molecular weight of PVA with Pn = 800, water‐soluble PVA microfibrillar fibers were prepared because of the high level of syndiotacticity. In contrast, for PVA with Pn = 330, shapeless and globular morphologies were observed, indicating that molecular weight has an important role in the in situ fibrillation of syndiotacticity‐rich PVA. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1103–1111, 2002  相似文献   

19.
Copolymers of 2‐(N,N‐dimethylamino)ethyl methacrylate (DMAEMA) and ethylene glycol dimethacrylate (EGDMA) were synthesized via atom transfer radical polymerization using ethyl 2‐bromoisobutyrate as the initiator, Cu(I)Br as the catalyst, and 1,1,4,7,10,10‐hexamethyltriethylene tetramine as the ligand. At low crosslinker levels, the polymerizations followed the first‐order kinetics. However, when the crosslinker level was above 10 mol %, the ln([M]0/[M]) versus time curves showed deceleration at medium conversions because of the higher reactivity of EGDMA than that of DMAEMA. An acceleration at high conversions was also observed and probably caused by the diffusion limitations of catalyst/ligand complex in the polymer network. The hydrogels were characterized by swelling experiments, and the sol polymers were characterized by the size exclusion chromatographic technique to determine the number‐average molecular weight and polydispersity. The gel data were analyzed and, via a comparison to Flory's gelation theory, found to be more homogeneous than similar hydrogels prepared by conventional free‐radical polymerization methods. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3780–3788, 2001  相似文献   

20.
The effects of Lewis acids, that is, rare earth metal trifluoromethanesulfonates, on the free‐radical polymerization of N‐methylmethacrylamide (MMAM), N‐isopropylmethacrylamide (IPMAM), Ntert‐butylmethacrylamide (tBMAM), N‐phenylmethacrylamide (PMAM), and methacrylamide were examined under various conditions. A catalytic amount of Yb(OSO2CF3)3 significantly affected the stereochemistry during the radical polymerization. Polymerization solvents strongly influenced the effect of the Lewis acids. Methanol was the best solvent for increasing the isotactic specificity during the polymerization of MMAM and IPMAM, whereas tetrahydrofuran was more effective for the tBMAM and PMAM polymerizations. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1027–1033, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号