首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
流动聚焦是一种有效的微细射流产生方法,其原理可以描述为从毛细管流出的流体由另一种高速运动的流体驱动,经小孔聚焦后形成稳定的锥–射流结构,射流因不稳定性破碎成单分散的液滴.自从1998年流动聚焦被提出以来,陆续发展了单轴流动聚焦、电流动聚焦、复合流动聚焦和微流控流动聚焦等毛细流动技术.这些技术稳定、易操作、没有苛刻的环境条件的要求,能够制备单分散性较好的微纳米量级的液滴、颗粒和胶囊,在科学研究和实际应用中具有重要价值.流动聚焦涉及了多尺度、多界面和多场耦合的复杂流体力学问题,其中稳定的锥形是形成稳定射流的先决条件,过程参数是影响射流界面扰动发展的关键因素,而射流不稳定性分析是揭示射流破碎的最主要理论工具.该文回顾了近二十年来不同结构流动聚焦的研究进展,概述这些技术涉及的过程控制、流动模式、尺度律和不稳定性分析等关键力学问题,总结射流不稳定性的研究方法和已取得的成果,最后展望流动聚焦的研究方向和应用前景.  相似文献   

2.
司廷  刘志勇  尹协振 《力学季刊》2007,28(4):533-538
介绍了一种制备微纳米量级颗粒的流动聚焦技术,它的最基本的特点是从毛细管流出的液体由高速运动气体驱动经小孔聚焦形成稳定的锥,锥顶端射出的微射流因不稳定性破碎成小颗粒.实验在自行设计的装置上完成.分析了流动聚焦技术中影响锥-射流以及颗粒形貌的因素,总结了过程中装置的结构参数以及气体压力降、液体流量和物性等参数对射流的直径的影响.结果显示该技术制备的颗粒单分散性好,直径达到微米和亚微米量级,在工业方面有重大应用前景.  相似文献   

3.
The instability of a focused liquid jet is studied by semi-analytical methods and by methods of computational fluid dynamics. The semi-analytical approach relies on earlier work on the instability of an extending liquid thread and is based on the Stokes flow regime and small-amplitude perturbations. The evolution of different excitation modes is evaluated and compared. Through hydrodynamic focusing and the corresponding extensional flow an initially stable mode may become unstable and it depends on the position away from the inlet which mode is to be regarded as the most unstable one. When plotting a hypothetical jet decay length against the excitation wave number, a comparatively broad minimum is exhibited. The CFD simulations based on the volume-of-fluid method show that the jet may break up either in the conical focusing zone or in the attached capillary, depending on the flow velocity. When the deformation of the jet surface reaches a certain amplitude, the jet assumes a “beads-on-a-string” structure instead of a shape derived from a harmonic perturbation. A jet decay within the capillary produces elongated droplets with cusped ends. When comparing the results of the CFD and the semi-analytical model, it turns out that the CFD simulations predict more stable jets with a larger decay length. An analysis of the flow velocity field shows that the increased stability might be due to the interaction of the jet with the channel walls.  相似文献   

4.
In this paper we present a numerical model for the coarse-grid simulation of turbulent liquid jet breakup using an Eulerian–Lagrangian coupling. To picture the unresolved droplet formation near the liquid jet interface in the case of coarse grids we considered a theoretical model to describe the unresolved flow instabilities leading to turbulent breakup. These entrained droplets are then represented by an Eulerian–Lagrangian hybrid concept. On the one hand, we used a volume of fluid method (VOF) to characterize the global spreading and the initiation of droplet formation; one the other hand, Lagrangian droplets are released at the liquid–gas interface according to the theoretical model balancing consolidating and disruptive energies. Here, a numerical coupling was required between Eulerian liquid core and Lagrangian droplets using mass and momentum source terms. The presented methodology was tested for different liquid jets in Rayleigh, wind-induced and atomization regimes and validated against literature data. This comparison reveals fairly good qualitative agreement in the cases of jet spreading, jet instability and jet breakup as well as relatively accurate size distribution and Sauter mean diameter (SMD) of the droplets. Furthermore, the model was able to capture the regime transitions from Rayleigh instability to atomization appropriately. Finally, the presented sub-grid model predicts the effect of the gas-phase pressure on the droplet sizes very well.  相似文献   

5.
It has long been known that the presence of surfactants on the free surface of a liquid jet can create surface tension gradients along the interface. The resulting formation of tangential stresses along the surface lead to Marangoni type flows and greatly affect the resulting dynamics of rupture. In this way surfactants can be used to manipulate the breakup of a liquid jet and control the size of droplets produced. In this paper we investigate the effects of insoluble surfactants on the breakup of rotating liquid jets with applications to industrial prilling. Using a long wavelength approximation we reduce the governing equations into a set of one-dimensional equations. We use an asymptotic theory to find steady solutions and then carry out a linear instability analysis on these solutions. We show that steady state centreline solutions are independent of viscosity to leading order and that the most unstable wavenumber and growth rate of disturbances decrease as the effectiveness of surfactants is increased. We also numerically solve these equations using a finite difference scheme to investigate the effects of changing the initial surfactant concentration and other fluid parameters. Our results show that differences in breakup lengths between rotating surfactant-laden jets and surfactant-free jets increase with the rate of rotation. Moreover, we find that satellite droplet sizes decrease as the rate of rotation is decreased with the effect of surfactants amplifying the reduction in sizes. Furthermore, the presence of surfactants at fixed rotation rates is shown to produce larger main droplets at low disturbance wavenumbers whilst satellite droplets are smaller for moderate disturbance wavenumbers κ≈0.7.  相似文献   

6.
界面不稳定性, 特别是Richtmyer–Meshkov (RM) 不稳定性, 是流体
力学中一项重要的研究内容, 无论在学术研究领域还是工程应用领域都有着
重要的研究价值和应用背景. RM 不稳定性问题自提出以来, 得到了学术界
广泛的关注, 其研究无论是在实验方法、数值模拟还是在理论分析方面都取
得了很大的进展. 在激波管中开展激波与界面相互作用的实验研究, 即研究
界面初始扰动在激波诱导下的演化规律, 是目前研究RM 不稳定性的重要手
段. RM 不稳定性实验研究包括3 个部分, 分别是激波的产生、界面的形成
以及流场的观测. 综述了RM 不稳定性的实验研究进展, 并针对目前研究的
局限性提出了RM 不稳定性今后实验研究的重点和方向: 汇聚激波作用下界
面不稳定性的发展规律; 激波冲击下多种形状及大振幅界面的演化机理; 三
维界面的RM 不稳定性发展规律; 可压缩湍流的形成与混合机理.   相似文献   

7.
Experimental investigation on flow modes of electrospinning   总被引:1,自引:0,他引:1  
Electrospinning experiments are performed byusing a set of experimental apparatus,a stroboscopic systemis adopted for capturing instantaneous images of the conejet configuration.The cone and the jet of aqueous solutionsof polyethylene oxide(PEO) are formed from an orifice of acapillary tube under the electric field.The viscoelastic constitutive relationship of the PEO solution is measured anddiscussed.The phenomena owing to the jet instability aredescribed,five flow modes and corresponding structures areobtained with variations of the fluid flow rate Q,the electricpotential U and the distance h from the orifice of the capillary tube to the collector.The flow modes of the cone-jetconfiguration involves the steady bending mode,the rotating bending mode,the swinging rotating mode,the blurringbending mode and the branching mode.Regimes in the Q-Uplane of the flow modes are also obtained.These results mayprovide the fundamentals to predict the operating conditionsexpected in practical applications.  相似文献   

8.
电场作用下流动聚焦的实验研究   总被引:1,自引:0,他引:1  
司廷  田瑞军  李广滨  尹协振 《力学学报》2011,43(6):1030-1036
通过在流动聚焦的同轴液-气射流区域施加电场, 开展了电场力和气动力共同作用下锥形以及带电射流的不稳定性特性实验研究. 实验在精密设计的流动聚焦装置上完成, 分析了外部电压、气体压力降和液体流量等主要控制参数对流动聚焦过程的影响, 获得了锥形的振动模式和稳定模式及其之间的转换, 得到了射流的滴模式、轴对称模式、共存模式和非轴对称模式及其转换并定量分析了电场对射流尺寸参数的影响. 结果表明, 相比于单一的流动聚焦, 该方法能够增强锥形的稳定性, 促进液体射流雾化, 减小颗粒的直径, 因此在科技领域和工程实际中具有重要的应用价值.   相似文献   

9.
在一套流动聚焦装置上加载高压直流电场形成电流动聚焦,并开展了非牛顿流体带电射流的不稳定性特性实验研究。实验在自行设计的装置系统上完成,获得了电流动聚焦中非牛顿流体射流的流动状态,考察了不同控制参数下射流形态的变化。结果表明,由于非牛顿流体具有粘弹性,与牛顿流体相比,非牛顿流体带电射流体现了更复杂的流动特点。这些实验结果为我们理解复杂条件下非牛顿流体射流的流动机理提供了参考,也有助于深入的实验分析和理论研究奠定了基础。  相似文献   

10.
Understanding the shear breakup in jet flows and the formation of droplets from ligaments is important to determine the final droplet size distribution (DSD). The initial droplet size, which affects the final DSD, is considered to be generated by the shear breakup. Large eddy simulation (LES) was performed to investigate the shear breakup in liquid-liquid jet flows. The explicit Volume of Fluid (VOF) model with the geometric reconstruction scheme was used to capture the oil-water interface. The estimated oil distribution including wave peaks, ligaments, droplets and water streaks were compared to the experiments with a good agreement. The estimated DSD matched with the measurements favorably well. In the simulation, the formation of droplets with a smooth and curved surface from ligaments or sheet-like structures was obtained. Different mechanisms were observed along with the shear layer including the formation of droplets from ligament through the capillary forces, breakage of a droplet into smaller ones and attachment of a droplet to a ligament. The destructive shear forces and resisting surface tension forces were quantified on stretching and retracting ligaments. The influence of internal viscous force was found to be negligible due to low oil viscosity. The critical capillary number was found to be larger than 5.0 for ligaments breaking with the shear breakup. The capillary number was below unity for retracting ligaments. The coalescence of two equal-sized droplets was obtained in the shear breakup region. The shear stress magnitude at the contact region increased more than two folds. The total surface area decreased nearly 20% after the coalescence.  相似文献   

11.
This paper describes the implementation of the instability analysis of wave growth on liquid jet surface, and maximum entropy principle (MEP) for prediction of droplet diameter distribution in primary breakup region. The early stage of the primary breakup, which contains the growth of wave on liquid–gas interface, is deterministic; whereas the droplet formation stage at the end of primary breakup is random and stochastic. The stage of droplet formation after the liquid bulk breakup can be modeled by statistical means based on the maximum entropy principle. The MEP provides a formulation that predicts the atomization process while satisfying constraint equations based on conservations of mass, momentum and energy. The deterministic aspect considers the instability of wave motion on jet surface before the liquid bulk breakup using the linear instability analysis, which provides information of the maximum growth rate and corresponding wavelength of instabilities in breakup zone. The two sub-models are coupled together using momentum source term and mean diameter of droplets. This model is also capable of considering drag force on droplets through gas–liquid interaction. The predicted results compared favorably with the experimentally measured droplet size distributions for hollow-cone sprays.  相似文献   

12.
We present a numerical model for predicting the instability and breakup of viscous microjets of Newtonian fluid. We adopt a one‐dimensional slender‐jet approximation and obtain the equations of motion in the form of a pair of coupled nonlinear partial differential equations (PDEs). We solve these equations using the method of lines, wherein the PDEs are transformed to a system of ordinary differential equations for the nodal values of the jet variables on a uniform staggered grid. We use the model to predict the instability and satellite formation in infinite microthreads of fluid and continuous microjets that emanate from an orifice. For the microthread analysis, we take into account arbitrary initial perturbations of the free‐surface and jet velocity, as well as Marangoni instability that is due to an arbitrary variation in the surface tension. For the continuous nozzle‐driven jet analysis, we take into account arbitrary time‐dependent perturbations of the free‐surface, velocity and/or surface tension as boundary conditions at the nozzle orifice. We validate the model using established computational data, as well as axisymmetric, volume of fluid (VOF) computational fluid dynamic (CFD) simulations. The key advantages of the model are its ease of implementation and speed of computation, which is several orders of magnitude faster than the VOF CFD simulations. The model enables rapid parametric analysis of jet breakup and satellite formation as a function of jet dimensions, modulation parameters, and fluid rheology. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
Epikhin  V. E.  Shkadov  V. Ya. 《Fluid Dynamics》1983,18(6):831-838
Annular jets of immiscible fluids are the subject of intense study. Particularly topical in applications are jets in the shape of a right circular cylinder. The space within annular jets may be reduced or increased by the influence of transverse forces and also by hydrodynamic instability of the jet flow. Twisting of the jet tends to make it close up. In the present paper, a study is made of ways of obtaining annular jets with nearly cylindrical shape and the greatest cavity length possible, allowance being made for gravity, capillary pressure surface forces, a pressure difference between the two sides of the phase interface, and the interaction with the ambient medium. A study is made of the influence of the velocity of the fluid and the medium in the initial section on the shape of the joint steady axisymmetric flow of immiscible viscous phases, including the shape of the middle surface of the annular jet.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 3–11, November–December, 1983.  相似文献   

14.
Bag breakup of nonturbulent liquid jets in crossflow   总被引:1,自引:0,他引:1  
An experimental investigation of the bag breakup of round nonturbulent liquid jets in gaseous crossflow at room temperature and pressure is described. Pulsed photography, pulsed shadowgraphy, and high-speed imaging were used to observe the column and surface waves along the liquid jet and the formation and breakup of bags. Measurements included: wavelengths of column and surface waves, jet velocities, the number of bags along the liquid jet, the number of nodes per bag, droplets sizes and velocities, and trajectories of droplets. Present results show that the column waves of a nonturbulent liquid jet in crossflow within bag breakup regime can be explained based on Rayleigh–Taylor instability. The number of nodes per bag affected the breakup mechanism of the bags. Three distinctive sizes of droplets were produced due the breakup of the bag membrane, the ring strings and the ring nodes. The size of the droplets resulting from the breakup of the bag membrane was constant independent of the crossflow Weber number. Finally different trajectories were observed for the three groups of droplets.  相似文献   

15.
A computational multiphysics model for simulating the formation and breakup of droplets from axisymmetric charged liquid jets in electric fields is developed. A fully-coupled approach is used to combine two-phase flow, electrostatics, and transport of charged species via diffusion, convection, and migration. A conservative level-set method is shown to be robust and efficient for interface tracking. Parametric simulations are performed across a range of fluid properties corresponding to commonly used liquids in inkjet printing and spray applications to examine their role in jet evolution and droplet formation. Specifically, the effects of electric potential drop, surface tension, viscosity, and mobility are investigated. Droplet velocity and size distributions are calculated, and the corresponding mean values are found to increase and decrease respectively with increasing electric field strength. The variations in droplet velocity and size are quantified, and droplet size and charge levels agree well with experimental values. Increasing mobility of charged species is found to enhance jet velocity and accelerate droplet formation by shifting charge from the liquid interior to the interface.  相似文献   

16.
为研究射流在水动力作用下的碎化特性,采用有限体积法对轴对称坐标下Navier-Stokes方程进行了求解,考虑重力和表面张力的影响,并通过Volume-of-Fluid法与Level-Set法成功捕捉到界面的不稳定发展、变形及射流碎化过程,分析了流场内部速度场和压力场分布,结果表明,射流碎化长度随Re/We“5数呈指数型增加,最后探讨了射流速度、直径及周围流体密度、粘性等参量对射流的碎化过程的影响规律.  相似文献   

17.
An annular liquid jet in a compressible gas medium has been examined using an Eulerian approach with mixed-fluid treatment. The governing equations have been solved by using highly accurate numerical methods. An adapted volume of fluid method combined with a continuum surface force model was used to capture the gas–liquid interface dynamics. The numerical simulations showed the existence of a recirculation zone adjacent to the nozzle exit and unsteady large vortical structures at downstream locations, which lead to significant velocity reversals in the flow field. It was found that the annular jet flow is highly unstable because of the existence of two adjacent shear layers in the annular configuration. The large vortical structures developed naturally in the flow field without external perturbations. Surface tension tends to promote the Kelvin–Helmholtz instability and the development of vortical structures that leads to an increased liquid dispersion. A decrease in the liquid sheet thickness resulted in a reduced liquid dispersion. It was identified that the liquid-to-gas density and viscosity ratios have opposite effects on the flow field with the reduced liquid-to-gas density ratio demoting the instability and the reduced liquid-to-gas viscosity ratio promoting the instability characteristics.  相似文献   

18.
In the usual forcespinning (FS) process, a meso-scale fluid jet is forced through an orifice of a rotating spinneret, where the ambient fluid is air. This leads to the formation of a jet with a curved centerline. In this study we make use of a phenomenological viscosity model for polymeric fluid to investigate the properties of nonlinear polymeric fiber jets during FS process. We apply multi-scale and perturbation techniques to determine the governing modeling systems for such nonlinear rotating jets and their stabilities. First, we calculate numerically the expressions for the leading order nonlinear steady solutions for the jet quantities such as radius, speed, stretching rate, strain rate and trajectory versus arc length, and we determine, in particular, these quantities for different values of the parameters that represent effects due to rotation, viscosity and relaxation time. Next, we calculate the stability of the nonlinear jet versus different types of perturbations. We find that the nonlinear fiber jet flow can be stable in most cases and uncover conditions for which fiber radius reduces and the jet speed or stretching rate increases.  相似文献   

19.
The hydromagnetic capillary instability of a jet of inviscid, impressible fluid of infinite electrical conductivity and subjected to a uniform axial magnetic field is studied, taking into account an axial flow in the jet. The results show that while the axial flow promotes instability due to capillary effects and the axial-flow effects can be completely suppressed by a magnetic field of sufficient strength.  相似文献   

20.
The droplet dynamics passing through a cylinder obstruction was investigated with direct numerical simulations with FE-FTM (Finite Element-Front Tracking Method). The effect of droplet size and capillary number (Ca) was studied for both Newtonian and viscoelastic fluids. In the case of Newtonian droplet immersed in Newtonian medium, the droplet breakup induced by the geometric hindrance depends on the droplet size. As Ca increases, the short droplets (1.3 times longer than the channel width) break up while passing through the obstruction. However, the breakup does not occur for longer droplets (1.8 times longer than the channel width). When the viscoelastic fluid characterized by the Oldroyd-B model is considered, the Newtonian droplet immersed in viscoelastic medium breaks up into two smaller droplets while passing through the cylinder obstruction with increasing Dem (Deborah number of the medium). We also show that the normal stress difference plays a key role on the droplet breakup and the droplet extension. The normal stress difference is enhanced in the negative wake region due to the droplet flow, which also promotes droplet extension in that region. This numerical study provides information not only on underlying physics of the droplet flows passing through a cylinder obstruction but also on the useful guidelines for microfluidic applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号