首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Two phosphorus‐containing acrylate monomers were synthesized from the reaction of ethyl α‐chloromethyl acrylate and t‐butyl α‐bromomethyl acrylate with triethyl phosphite. The selective hydrolysis of the ethyl ester monomer with trimethylsilyl bromide (TMSBr) gave a phosphonic acid monomer. The attempted bulk polymerizations of the monomers at 57–60 °C with 2,2′‐azobisisobutyronitrile (AIBN) were unsuccessful; however, the monomers were copolymerized with methyl methacrylate (MMA) in bulk at 60 °C with AIBN. The resulting copolymers produced chars on burning, showing potential as flame‐retardant materials. Additionally, α‐(chloromethyl)acryloyl chloride (CMAC) was reacted with diethyl (hydroxymethyl)phosphonate to obtain a new monomer with identical ester and ether moieties. This monomer was hydrolyzed with TMSBr, homopolymerized, and copolymerized with MMA. The thermal stabilities of the copolymers increased with increasing amounts of the phosphonate monomer in the copolymers. A new route to highly reactive phosphorus‐containing acrylate monomers was developed. A new derivative of CMAC with mixed ester and ether groups was synthesized by substitution, first with diethyl (hydroxymethyl)phosphonate and then with sodium acetate. This monomer showed the highest reactivity and gave a crosslinked polymer. The incorporation of an ester group increased the rate of polymerization. The relative reactivities of the synthesized monomers in photopolymerizations were determined and compared with those of the other phosphorous‐containing acrylate monomers. Changing the monomer structure allowed control of the polymerization reactivity so that new phosphorus‐containing polymers with desirable properties could be obtained. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2207–2217, 2003  相似文献   

2.
New methacrylate monomers containing phosphonic acid or both phosphonic and carboxylic acids were synthesized through the reaction of t‐butyl α‐bromomethyl acrylate with triethyl phosphite followed by the selective hydrolysis of the phosphonate or t‐butyl ester groups with trimethylsilyl bromide and trifluoroacetic acid. The copolymerization of these monomers with 2‐hydroxyethylmethacrylate was investigated with photodifferential scanning calorimetry at 40 °C with 2,2′‐dimethoxy‐2‐phenyl acetophenone as a photoinitiator. Quantum mechanical tools were also used to understand the mechanistic behavior of the polymerization reactions of these synthesized monomers. The propagation and chain‐transfer reactions were considered and rationalized. A strong effect of the monomer structure on the rate of polymerization was observed. The polymerization reactivities of the monomers increased with decreasing steric hindrance and/or increasing hydrogen‐bonding capacity because of the hydrolysis of the phosphonate and the t‐butyl ester groups. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2574–2583, 2005  相似文献   

3.
Two different groups of novel aminophosphonate‐containing methacrylates were synthesized. The route to the first group involves reactions of ethyl α‐bromomethacryate (EBBr) and t‐butyl α‐bromomethacryate (TBBr) with diethyl aminomethylphosphonate and diethyl 2‐aminoethylphosphonate. Bulk and solution polymerizations at 60–80 °C with 2,2′‐azobis(isobutyronitrile) (AIBN) gave crosslinked or soluble polymers depending on monomer structure and polymerization conditions. Increasing bulkiness from ethyl to t‐butyl decreases the polymerization rate, correlated well with the chemical shift differences of double bond carbons and consistent with the lower molecular weights of t‐butyl ester polymers (Mn = 1800–7900 vs. 50,000–72,000). The route to the second group involves the Michael addition reaction between diethyl aminomethylphosphonate and diethyl 2‐aminoethylphosphonate with 3‐(acryloyloxy)‐2‐hydroxypropyl methacrylate (AHM) to give secondary amines. The photopolymerization using differential scanning calorimeter showed that these monomers have similar or higher reactivities than AHM, even though AHM has two double bonds. The high rates of polymerization of these monomers were attributed to both hydrogen bonding interactions due to additional NH groups as well as chain transfer reactions. All the homopolymers obtained produced char (17–35%) on combustion. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011.  相似文献   

4.
5.
A series of copolymers of N,N‐dialkyl‐N‐2‐(methoxycarbonyl)allyl allyl ammonium chloride, N,N‐dialkyl‐N‐2‐(ethoxycarbonyl)allyl allyl ammonium chloride, and N,N‐dialkyl‐N‐2‐(t‐butoxycarbonyl)allyl allyl ammonium bromide with diallyldimethylammonium chloride (DADMAC) were prepared in water at 60 °C with 2,2′‐azo‐bis(2‐amidinopropane)dihydrochloride. A strong effect of ester substituents on cyclopolymerization was observed. The methyl and ethyl ester monomers showed high cyclization efficiencies during homopolymerizations and copolymerizations. Unexpectedly, the t‐butyl ester derivatives showed high crosslinking tendencies. Water‐soluble copolymers were obtained only with a decrease in the molar fraction of t‐butyl ester monomer below 30%. Relative reactivities of the allyl‐acrylate monomers in photopolymerizations were compared with the relative reactivity of DADMAC. Allyl‐acrylate monomers were much more reactive than DADMAC; the photopolymerization rate decreased in the following order: N,N‐morpholine‐N‐2‐(t‐butoxycarbonyl)allyl allyl ammonium bromide > N,N‐piperidyl‐N‐2‐(t‐butoxycarbonyl)allyl allyl ammonium bromide > N,N‐dibutyl‐N‐2‐(ethoxycarbonyl)allyl allyl ammonium chloride > N,N‐piperidyl‐N‐2‐(ethoxycarbonyl)allyl allyl ammonium chloride ∼ N,N‐morpholine‐N‐2‐(ethoxycarbonyl)allyl allyl ammonium chloride ∼ N,N‐piperidyl‐N‐2‐(methoxycarbonyl)allyl allyl ammonium chloride > N‐methyl‐N‐butyl‐N‐2‐(ethoxycarbonyl)allyl allyl ammonium chloride. Intrinsic viscosities of the polymers measured in 0.09 M NaCl ranged from 1.06 to 3.20 dL/g. The highest viscosities were obtained for copolymers of the t‐butyl ester monomers with piperidine and morpholine substituents. The copolymer of the t‐butyl ester with piperidine substituent and DADMAC was hydrolyzed in acid to give a polymer with zwitterionic character. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 640–649, 2001  相似文献   

6.
Novel aromatic mono‐ and diphosphonate monomers based on t‐butyl α‐bromomethacrylate were prepared for use in dental composites. The synthesis of the two monomers involved three steps: the reaction of diethyl phosphite with phenol or hydroquinone, the rearrangement of the resulting phosphate derivatives into o‐hydroxyaryl phosphonates with lithium diisopropylamide, and the reaction of o‐hydroxyaryl phosphonates with t‐butyl α‐bromomethacrylate. Then, the selective hydrolysis of the t‐butyl ester groups of the monomers with trifluoroacetic acid gave the other carboxylic acid containing monomers. The photopolymerization behaviors of the synthesized monomers with glycerol dimethacrylate and triethylene glycol dimethacrylate were investigated with photodifferential scanning calorimetry at 40 °C with 2,2′‐dimethoxy‐2‐phenyl acetophenone as the photoinitiator. The hydrolysis of the t‐butyl groups of the monomers increased the reactivity and the rates of polymerization of the monomers. The mixtures of the acid monomers showed rates of polymerizations similar to those of homopolymerizations of triethylene glycol dimethacrylate and glycerol dimethacrylate. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6775–6781, 2006  相似文献   

7.
Three novel phosphonated methacrylate monomers have been synthesized and studied for use in dental applications. Two of the monomers were synthesized from the reactions of glycidyl methacrylate (GMA) with (diethoxy‐phosphoryl)‐acetic acid (monomer 1 ) and (2‐hydroxy‐ethyl)‐phosphonic acid dimethyl ester (monomer 2 ). These monomers showed high crosslinking tendencies during thermal bulk and solution polymerizations. The third monomer (monomer 3 ) was prepared by the reaction of bisphenol A diglycidylether (DER) with (diethoxy‐phosphoryl)‐acetic acid and subsequent conversion of the resulting diol to the methacrylate with methacryloyl chloride. The homopolymerization and copolymerization behaviors of the synthesized monomers were also investigated with glycerol dimethacrylate (GDMA), triethylene glycol dimethacrylate (TEGDMA), and 2,2‐bis[4‐(2‐hydroxy‐3‐methacryloyloxy propyloxy) phenyl] propane (bis‐GMA) using photodifferential scanning calorimetry at 40 °C using 2,2′‐dimethoxy‐2‐phenyl acetophenone (DMPA) as photoinitiator. Monomer 1 showed polymerization rate similar or greater than dimethacrylates studied here but with higher conversion. The maximum rate of polymerizations decreased in the following order: 1 ~TEGDMA>GDMA~bis‐GMA~ 3 > 2 . A synergistic effect in the rate of polymerization was observed during copolymerizations. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2290–2299, 2008  相似文献   

8.
Novel dental monomers containing both phosphonic and carboxylic acid functional groups were prepared. The monomers were based on t‐butyl α‐bromomethacrylate (t‐BuBMA) and synthesized in three steps: The reaction of o‐hydroxyaryl phosphonates [diethyl (2‐hydroxyphenyl) phosphonate, tetraethyl (2,5‐dihydroxy‐1,4‐phenylene) diphosphonate and tetraethyl 5,5′‐(propane‐2,2‐diyl)bis(2‐hydroxy‐5,1‐ phenylene) diphosphonate] with t‐BuBMA, the hydrolysis of phosphonate groups to phosphonic acid using trimethyl silylbromide, and the hydrolysis of the t‐butyl groups to carboxylic acid with trifluoroacetic acid. The monomers were solids and soluble in water and ethanol. The structures of the monomers were determined by Fourier transform infrared (FTIR), 1H, 13C, and 31P nuclear magnetic resonance (NMR) spectroscopy. The copolymerization behaviors of the synthesized monomers with glycerol dimethacrylate were first investigated in bulk using photodifferential scanning calorimetry at 40 °C with 2,2′‐dimethoxy‐2‐phenyl acetophenone as photoinitiator. Then, the solution copolymerization of the monomers with acrylamide in ethanol and water was studied, indicating that the synthesized monomers are incorporated into the copolymers. The acidic nature of the aqueous solutions of these monomers (pH values 1.72–1.87) is expected to give them etching properties important for dental applications. The interaction of the monomers with hydroxyapatite was investigated using 13C NMR and FTIR techniques. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1953–1965, 2009  相似文献   

9.
Novel methacrylate and acrylate monomers having an isothiocyanate structure, 2‐isothiocyanatoethyl methacrylate (ITEMA) and 2‐isothiocyanatoethyl acrylate (ITEA), were synthesized, and their radical polymerizations were examined, respectively. ITEMA and ITEA were synthesized by addition of carbon disulfide to 2‐aminoethyl methacryrate or 2‐aminoethyl acrylate, followed by treatment with ethyl chloroformate. Radical polymerizations of the obtained monomers ( ITEMA , ITEA ) were carried out methyl ethyl ketone using 2,2'‐azobisisobutyronitrile (AIBN) as an initiator to obtain the corresponding polymers. The glass transition temperatures of the poly‐ITEMA and poly‐ITEA were determined to be 55 and 2 °C by differential scanning calorimetry, respectively. The 5 wt % decomposition temperatures of the poly‐ITEMA and poly‐ITEA were determined to be 277 and 269 °C by thermogravimetric analysis, respectively. Isothiocyanato groups in the monomers did not react with water in acetone solution at 60 °C for 24 h to be tolerable to water. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4522–4529  相似文献   

10.
Radical copolymerizations of electron‐deficient 2‐trifluoromethylacrylic (TFMA) monomers, such as 2‐trifluoromethylacrylic acid and t‐butyl 2‐trifluoromethylacrylate (TBTFMA), with electron‐rich norbornene derivatives and vinyl ethers with 2,2′‐azobisisobutyronitrile as the initiator were investigated in detail through the analysis of the kinetics in situ with 1H NMR and through the determination of the monomer reactivity ratios. The norbornene derivatives used in this study included bicyclo[2.2.1]hept‐2‐ene (norbornene) and 5‐(2‐trifluoromethyl‐1,1,1‐trifluoro‐2‐hydroxylpropyl)‐2‐norbornene. The vinyl ether monomers were ethyl vinyl ether, t‐butyl vinyl ether, and 3,4‐dihydro‐2‐H‐pyran. Vinylene carbonate was found to copolymerize with TBTFMA. Although none of the monomers underwent radical homopolymerization under normal conditions, they copolymerized readily, producing a copolymer containing 60–70 mol % TFMA. The copolymerization of the TFMA monomer with norbornenes and vinyl ethers deviated from the terminal model and could be described by the penultimate model. The copolymers of TFMA reported in this article were evaluated as chemical amplification resist polymers for the emerging field of 157‐nm lithography. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1478–1505, 2004  相似文献   

11.
The organometallic monomers styrenetricarbonylchromium and p‐methylstyrenetricarbonylchromium were copolymerized in ethyl acetate solutions with methyl methacrylate and butyl acrylate using azobisisobutyronitrile at 50 °C and a binary system including di‐tert‐butylperoxytriphenylantimony at 30 °C as the free‐radical initiators. Comonomers are proposed to form a molecular complex based on the results of ultraviolet and electron spin resonance spectroscopy. A kinetic study shows that chromium‐containing monomers at high concentrations in the mixture reduce the rate of copolymerization. The addition of styrenetricarbonylchromium to butyl acrylate significantly slows down the autoacceleration. The reactivity ratios of the comonomer pairs, namely, styrenetricarbonylchromium–methyl methacrylate, styrenetricarbonylchromium–butyl acrylate and p‐methylstyrenetricarbonylchromium–methyl methacrylate, were determined using the method of Kelen–Tudos for low conversion polymerizations.Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

12.
In restorative dentistry, acrylamide monomers bearing phosphonic acid moieties have proved to be useful species for the formulation of dental self‐etch adhesives since they provide enhanced adhesion to hydroxyapatite and are not subject to hydrolysis, thus potentially improving their adhesive durability. Previous studies have demonstrated that phosphonic acid acrylamides increase the rate of photopolymerization of diacrylamide monomers. To understand whether this rate acceleration is specific to the acrylamide function of the monomer, or due to the phosphonic acid group per se, or is applicable only with a crosslinking reaction, we have synthesized several acrylamide and methacrylate monomers bearing phosphonic acid or phosphonate moieties and studied their photopolymerization kinetics. The acrylamide phosphonic acid was found to accelerate the polymerization rate but similar monomers bearing a phosphonate ester group had a much smaller effect. A similar accelerating effect was observed when the phosphonic acid‐based monomers were copolymerized with a monofunctional acrylamide monomer, excluding the possibility that the rate acceleration might be related to the crosslinking process. This rate effect is also observed when a nonpolymerizable organic phosphonic acid is present in the polymerizing medium. We suggest that the increase of the medium polarity is responsible for this rate enhancement effect. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

13.
The ester‐functional alkoxyamine 2,2‐dimethyl‐3‐(1‐(4‐(methoxycarbonyl)phenyl)ethoxy)‐4‐(4‐(methoxycarbonyl)phenyl)‐3‐azapentane ( 2 ) was efficiently synthesized for use as a functional initiator in nitroxide‐mediated polymerization. Two equivalents of 1‐(4‐(methoxycarbonyl)phenyl)ethyl radical were added across the double bond of 2‐methyl‐2‐nitrosopropane to form alkoxyamine 2 , which was found to control the polymerization of styrene, isoprene, and n‐butyl acrylate. The ester moieties were hydrolyzed for subsequent esterification with 1‐pyrenebutanol to form a dipyrene‐labeled initiator that was used to probe nitroxide end‐group fidelity after styrene polymerization. High retention of nitroxide was confirmed by UV‐vis studies over a range of monomer conversions. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6342–6352, 2009  相似文献   

14.
Seven cyclolinear polymers bearing the tertiary‐butyl α‐(hydroxymethyl)acrylate (TBHMA) ether dimer were prepared using reversible addition–fragmentation chain transfer (RAFT) polymerization. Of the seven polymers, five were cyclolinear homopolymers of the TBHMA ether dimer with different degrees of polymerization, one was an “arm‐first” star homopolymer, and the other was an amphiphilic linear copolymer based on the positively ionizable hydrophilic 2‐(dimethylamino)ethyl methacrylate (DMAEMA) and the TBHMA ether dimer. For comparison, two more polymers were prepared using RAFT polymerization where the TBHMA ether dimer was replaced by tertiary‐butyl methacrylate (tBuMA). In particular, an amphiphilic linear DMAEMA–tBuMA diblock copolymer and a tBuMA arm‐first star homopolymer were also synthesized. All polymers were characterized in terms of their molecular weights and composition using gel permeation chromatography and 1H NMR spectroscopy, respectively. Subsequently, the tertiary‐butyl groups of the TBHMA ether dimer units and those of the tBuMA units were cleaved by hydrolysis to yield carboxylic acid groups. The successful removal of the tertiary‐butyl groups was confirmed using 1H and 13C NMR and attenuated total reflectance‐Fourier transform infrared spectroscopies. The hydrolyzed (co)polymers exhibited pK values of the carboxylic acid groups of around 4.5, and glass transition temperatures, Tg, of around 200 °C, which were 50 °C higher than those of their nonhydrolyzed precursors. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

15.
Ethyl α‐hydroxymethylacrylate was homopolymerized and copolymerized with methyl methacrylate in chlorobenzene and 1,4‐dioxane solutions at 50 °C with 1.5 × 10?2 mol/L 2,2′‐azobisisobutyronitrile as an initiator and a global monomer concentration of 3.0 mol/L. The experiments showed differences in the calculated values of the monomer reactivity ratios in both solvents. The kinetic behavior was analyzed in terms of the implicit penultimate effect and the radical reactivity ratios. All the parameters were examined with respect to the aggregation ability of the ethyl α‐hydroxymethylacrylate monomer. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4187–4195, 2005  相似文献   

16.
Optically active homopolymers and copolymers, bearing chiral units at the side chain and end chain, were prepared via atom transfer radical polymerization (ATRP) techniques. The well‐defined optically active polymers were obtained via the ATRP of pregnenolone methacrylate (PR‐MA), β‐cholestanol acrylate (CH‐A), and 20‐(hydroxymethyl)‐pregna‐1,4‐dien‐3‐one acrylate (HPD‐A) with ethyl 2‐bromopropionate as the initiator and CuBr/N,N,N′,N″,N″‐pentamethyldiethylenetriamine as the catalytic system. The experimental results showed that the polymerizations of PR‐MA, CH‐A, and HPD‐A proceeded in a living fashion, providing pendent chiral group polymers with low molecular weight distributions and predetermined molecular weights that increased linearly with the monomer conversion. Furthermore, the copolymers poly(pregnenolone methacrylate)‐b‐poly[(dimethylamino)ethyl methacrylate] and poly(pregnenolone methacrylate‐co‐methyl methacrylate) were synthesized and characterized with 1H NMR, transmission electron microscopy, and polarimetric analysis. In addition, when optically active initiators estrone 2‐bromopropionate and 20‐(hydroxymethyl)‐pregna‐1,4‐dien‐3‐one 2‐bromopropionate were used for ATRPs of methyl methacrylate and styrene, terminal optically active poly(methyl methacrylate) and polystyrene were obtained. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1502–1513, 2006  相似文献   

17.
Novel allyl‐acrylate quaternary ammonium salts were synthesized using two different methods. In the first (method 1), N,N‐dimethyl‐N‐2‐(ethoxycarbonyl)allyl allylammonium bromide and N,N‐dimethyl‐N‐2‐(tert‐butoxycarbonyl)allyl allylammonium bromide were formed by reacting tertiary amines with allyl bromide. The second (method 2) involved reacting N,N‐dialkyl‐N‐allylamine with either ethyl α‐chloromethyl acrylate (ECMA) or tert‐butyl α‐bromomethyl acrylate (TBBMA). The monomers obtained with the method 2 were N,N‐diethyl‐N‐2‐(ethoxycarbonyl)allyl allylammonium chloride, N,N‐diethyl‐N‐2‐(tert‐butoxycarbonyl)allyl allylammonium bromide, and N,N‐piperidyl‐N‐2‐(ethoxycarbonyl)allyl allylammonium chloride. Higher purity monomers were obtained with the method 2. Solution polymerizations with 2,2′‐azobis(2‐amidinopropane) dihydrochloride (V‐50) in water at 60–70°C gave soluble cyclopolymers which showed polyelectrolyte behavior in pure water. Intrinsic viscosities measured in 0.09M NaCl ranged from 0.45 to 2.45 dL/g. 1H‐ and 13C‐NMR spectra indicated high cyclization efficiencies. The ester groups of the tert‐butyl polymer were hydrolyzed completely in acid to give a polymer with zwitterionic character. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 901–907, 1999  相似文献   

18.
The radical copolymerization of electron‐deficient maleic anhydride (MA) and electron‐rich norbornene (NB) derivatives with 2,2′‐azobis(isobutyronitrile) (AIBN) in dioxane‐d8 has been monitored in situ by 1H NMR spectroscopy with free induction decays recorded every 30 min at 60, 70, or 84 °C. The ratios of the monomer pairs were varied in some cases. The NB derivatives employed in this study included bicyclo[2.2.1]hept‐2‐ene (NB), t‐butyl 5‐norbornene‐2‐carboxylate, methyl 5‐norbornene‐2‐methyl‐2‐carboxylate, and ethyl tetracyclo[4.4.0.12,5.17,10]dodec‐3‐ene‐8‐carboxylate. Decomposition of AIBN, consumption of the monomers, feed ratios, endo/exo ratios, copolymer compositions, and copolymer yields were studied as a function of polymerization time. Furthermore, a homopolymerizable third monomer (t‐butyl methacrylate, methacrylic acid, t‐butyl acrylate, or acrylic acid) was added to the NB/MA 1/1 system, revealing that the methacrylic monomer polymerizes rapidly in the early stage and that the ratio of MA to NB in the terpolymer strongly deviates from 1/1. In contrast, however, the acrylic monomers are more uniformly incorporated into the polymer. Nevertheless, these studies indicate that MA and NB do not always behave as a pair in radical polymerization and disproves the commonly believed charge‐transfer mechanism. Electron‐deficient fumaronitrile was also included in the kinetics study. To further understand the copolymerization mechanism, MA and NB were competitively reacted with a cyclohexyl radical generated by the treatment of cyclohexylmercuric chloride with sodium borohydride (mercury method). A gas chromatographic analysis of the reaction mixtures has revealed that a cyclohexyl radical reacts with MA almost exclusively in competition and that the cyclohexyl adduct of MA essentially accounts for all the products in a mass balance experiment, eliminating a possibility of the formation of an adduct involving the MA–NB charge‐transfer complex. Thus, the participation of a charge‐transfer complex in the copolymerization of MA and NB cannot be important. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3521–3542, 2000  相似文献   

19.
In this study, vinyl ester monomers were synthesized by an amine catalyzed Michael addition reaction between a multifunctional thiol and the acrylate double bond of vinyl acrylate. The copolymerization behavior of both methacrylate/vinyl ester and acrylate/vinyl ester systems was studied with near‐infrared spectroscopy. In acrylate/vinyl ester systems, the acrylate groups polymerize faster than the vinyl ester groups resulting in an overall conversion of 80% for acrylate double bonds in the acrylate/vinyl ester system relative to only 50% in the bulk acrylate system. In the methacrylate/vinyl ester systems, the difference in reactivity is even more pronounced resulting in two distinguishable polymerization regimes, one dominated by methacrylate polymerization and a second dominated by vinyl ester polymerization. A faster polymerization rate and higher overall conversion of the methacrylate double bonds is thus achieved relative to polymerization of the pure methacrylate system. The methacrylate conversion in the methacrylate/vinyl ester system is near 100% compared to only ~60% in the pure methacrylate system. Utilizing hydrophilic vinyl ester and hydrophobic methacrylate monomers, polymerization‐induced phase separation is observed. The phase separated domain size is in the order of ~1 μm under the polymerization conditions. The phase separated domains become larger and more distinct with slower polymerization and correspondingly increased time for diffusion. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2509–2517, 2009  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号