共查询到20条相似文献,搜索用时 15 毫秒
1.
Giseop Kwak Ken-Ichi Sumiya Fumio Sanda Toshio Masuda 《Journal of polymer science. Part A, Polymer chemistry》2003,41(22):3615-3624
Polymerization of p-(dimethylsilyl)phenylacetylene in toluene at 25 and 80 °C with RhI(PPh3)3 catalyst afforded highly regio- and stereoregular poly(dimethylsilylene-1,4-phenylenevinylene)s [cis- and trans-poly( 1a )s] containing 98% cis- and 99% trans-vinylene moieties, respectively. The trans-type polymers exhibited redshifts and hyperchromic effects in the ultraviolet–visible spectrum as compared with the cis-type counterparts. Photoirradiation of cis- and trans-poly( 1a )s gave cis-rich mixtures at equilibrium states. The trans and cis polymers exhibited different emission properties, for example—trans polymer, emissn λmax = 400 nm, quantum yield: 3.4 × 10−3 and cis polymer, emissn λmax = 380 nm, quantum yield: 1.5 × 10−3. Besides poly( 1a ), poly(dimethylsilylenearylenevinylene)s containing biphenylene and phenylenesilylenephenylene units [poly( 3 )] were prepared. The extent of conjugation in these polymers decreased in the orders of biphenylene > phenylene > phenylenesilylenephenylene as well as trans-vinylene > cis-vinylene. The quantum yield of the trans-rich polymer with biphenylene moiety was fairly large and 0.15. Polyaddition of 1,4-bis(dimethylsilyl)benzene and three types of diethynylarenes (4,4′-diethynylbiphenyl, 2,7-diethynylfluorene, and 2,6-diethynylnaphthalene) catalyzed by RhI(PPh3)3 provided novel regio- and stereoregular polymers [poly( 6 )]. These polymers displayed blue light emission with high quantum yields (4–81%). © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3615–3624, 2003 相似文献
2.
β‐Octamethoxy‐Substituted 22π and 26π Stretched Porphycenes: Synthesis,Characterization, Photodynamics,and Nonlinear Optical Studies 下载免费PDF全文
Anup Rana Sangsu Lee Prof. Dr. Dongho Kim Dr. Pradeepta K. Panda 《Chemistry (Weinheim an der Bergstrasse, Germany)》2015,21(34):12129-12135
Three meso‐expanded tetrapyrrolic aromatic macrocycles, including 22π and 26π acetylene–cumulene bridged stretched octamethoxyporphycenes and octamethoxy[22]porphyrin‐(2.2.2.2), are reported, for the first time, by modification of previously reported synthetic methods. This strategy led to an enhancement in the overall yield of their corresponding octaethyl analogues. The methoxy‐substituted expanded porphycenes display slightly blueshifted absorption relative to their ethyl analogues, along with very weak fluorescence, probably due to efficient intramolecular charge transfer (ICT). Additionally, the two‐photon absorption (TPA) cross sections of these macrocycles were evaluated; these are strongly related to core expansion of the porphyrin aromaticity through increased meso‐bridging carbon atoms as well as conformational flexibility and substitution effects at the macrocyclic periphery. In particular, the octamethoxy stretched porphycenes display strong TPA compared with the octaethyl analogues due to the dominant ICT character of methoxy groups with a maximum TPA cross section of 830 GM at 1700 nm observed for 26π‐octamethoxyacetylene–cumuleneporphycene. 相似文献
3.
R. Resmi S. R. Amrutha M. Jayakannan 《Journal of polymer science. Part A, Polymer chemistry》2009,47(10):2631-2646
A new series of symmetrically substituted bulky PPV‐copolymers based on poly(bis‐2,5‐(2‐ethylhexyloxy)‐1,4‐phenylenevinylene) ( BEH‐PPV ) bearing tricyclodecane (TCD) pendants were synthesized to study the effect of chain aggregation in the π‐conjugated polymer backbone. The composition of the copolymers was varied up to 100 mol % and the structures of the copolymer were confirmed by NMR and FTIR. The molecular weights of the copolymers were obtained as Mw = 11,500–1,78,800 depending on the TCD‐incorporation in BEH‐PPV. The origin of the π‐aggregation was investigated using mixture of solvents (polar or nonpolar) or temperature as external stimuli. Absorption, photoluminescence, and time‐resolved fluorescence decay techniques were employed as tools to trace molecular aggregation in solution and solid state. The TCD‐substituted bulky copolymers showed almost twice the enhancement in photoluminescence compared with that of BEH‐PPV . Solvent‐induced aggregation studies of copolymers revealed the existence of strong molecular aggregation in BEH‐PPV compared with that of bulky copolymers. Variable temperature studies further evidence for the reversibility of molecular aggregation on heating/cooling cycles and showed isosbetic points with respect to free and aggregated polymer chains. Time‐resolved fluorescent studies confirmed the existence of free and aggregated π‐conjugated species with a life time of 0.1 to 1.0 ns. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2631–2646, 2009 相似文献
4.
Sujata Marathe Takashi Uemura Kensuke Naka Yoshiki Chujo 《Journal of polymer science. Part A, Polymer chemistry》2001,39(20):3593-3603
Polymerization by cycloaddition between aldothioketene and its alkynethiol tautomer (derived in situ from a diyne) leading to the formation of dithiafulvene unit‐linked polymers has been studied. Two aromatic diynes [bis(4‐ethynyldiphenyl)methane ( 1a ) and 4,4′‐diethynyldiphenyl ether) ( 1b )] were used as starting materials with the aim of obtaining non‐π‐conjugated methylene‐ and oxygen‐bridged aromatic poly(dithiafulvene)s. The poly(dithiafulvene) derived from bis(4‐ethynyldiphenyl)methane can be considered as an interesting precursor to a small band‐gap polymer having alternating aromatic and quinonoid moieties. Further, two aliphatic diynes [1,7‐octadiyne ( 3a ) and 1,9‐decadiyne ( 3b )] were subjected to cycloaddition polymerization to obtain aliphatic poly(dithiafulvene)s containing localized electron‐rich dithiafulvene units. The polymers obtained were characterized by IR, 1H NMR, gel permeation chromatography, and cyclic voltammetry. The electron‐donating property of the polymers was evident from the charge‐transfer (CT) complex formation with an electron acceptor 7,7,8,8‐teracyanoquinodimethane. The CT complexes were characterized by IR, 1H NMR, and ultraviolet–visible spectroscopies. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3593–3603, 2001 相似文献
5.
Takakazu Yamamoto Keisuke Honda 《Journal of polymer science. Part A, Polymer chemistry》1998,36(13):2201-2207
Palladium–catalyzed polycondensation between 2,5–diiodo–3–hexylthiophene I–Th(Hex)–I with mixtures of p–diethynylbenzene HCC—Ph—CCH and α,ω–diethynylalkane HCC(CH2)lCCH (l = 3 or 8) gives poly(aryleneethynylene) PAE–type copolymers [CC(CH2)lCC—Th(Hex)]m[CC—Ph—CC—Th(Hex)]n containing the methylene unit. The copolymers have a molecular weight (Mn) of about 1.2 × 104 as determined by GPC (polystyrene standard) and are considered to possess essentially a random sequences in view of the —CC(CH2)lCC— and —CC—Ph—CC— units as judged from their UV–visible spectra. By the incorporation of the (CH2)l unit, the λmax position of the corresponding PAE homopolymer [CC—Ph—CC—Th(Hex)]n is shifted to a shorter wavelength. However, the copolymers give rise to a photoluminescence PL peak essentially agreeing with a PL peak of the homopolymer, suggesting occurrence of energy transfer in the copolymer. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. A Polym. Chem. 36: 2201–2207, 1998 相似文献
6.
Andreas Braendle Aleksandr Perevedentsev Nathan J. Cheetham Paul N. Stavrinou Jörg A. Schachner Nadia C. Mösch‐Zanetti Markus Niederberger Walter R. Caseri 《Journal of Polymer Science.Polymer Physics》2017,55(9):707-720
Poly(phenylene methylene) (PPM) exhibits pronounced blue fluorescence in solutions as well as in the solid state despite its non‐π‐conjugated nature. Optical spectroscopy was used to explore the characteristics and the physical origin of its unexpected optical properties, namely absorption in the 350–450 nm and photoluminescence in the 400–600 nm spectral regions. It is shown that PPM possesses two discrete optically active species, and a relatively long photoluminescence lifetime (>8 ns) in the solid‐state. Given the evidence reported herein, π‐stacking and aggregation/crystallization, as well as the formation of anthracene‐related impurities, are excluded as the probable origins of the optical properties. Instead there is sufficient evidence that PPM supports homoconjugation, that is: π‐orbital overlap across adjacent repeat units enabled by particular chain conformation(s), which is confirmed by DFT calculations. Furthermore, poly(2‐methylphenylene methylene) and poly(2,4,6‐trimethylphenylene methylene) – two derivatives of PPM – were synthesized and found to exhibit comparable spectroscopic properties, confirming the generality of the findings reported for PPM. Cyclic voltammetry measurements revealed the HOMO–LUMO gap to be 3.2–3.3 eV for all three polymers. This study illustrates a new approach to the design of light‐emitting polymers possessing hitherto unknown optical properties. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 707–720 相似文献
7.
Martin Proudmore Ji-Feng Ding Richard H. Mobbs Stephen G. Yeates Colin Price Colin Booth 《Journal of polymer science. Part A, Polymer chemistry》1995,33(10):1615-1625
Poly(hexafluoropropylene oxide), poly(HFPO), networks were prepared from functional polymers by end linking via urethane groups. The prepolymers were characterized by NMR spectroscopy and GPC. The networks were characterized by determination of the number of network chains from the shear modulus, and were snown to contain both trifunctional crosslinks and difunctional links. The properties of the networks were investigated by a range of techniques. Compared with fully-fluorinated networks formed via triazine cross-links, investigated previously, the urethane-linked networks were more readily prepared but were poorer elastomers, were less thermally stable, and were less resistant to swelling by common polar solvents. © 1995 John Wiley & Sons, Inc. 相似文献
8.
Toshifumi Inouchi Dr. Takuya Nakashima Dr. Masaya Toba Prof. Tsuyoshi Kawai 《化学:亚洲杂志》2011,6(11):3020-3027
T‐shaped π‐conjugated molecules with an N‐methyl‐benzimidazole junction have been synthesized and their acid‐responsive photophysical properties owing to the change in the π‐conjugation system are discussed. T‐shaped π‐conjugated molecules consist of two orthogonal π‐conjugated systems including a phenyl thiophene extended from the 2‐position and alkyl phenylenes connected through various π‐spacers from the 4,7‐positions of the N‐methyl‐benzimidazole junction. The π‐spacers, such as thiophene, ethyne, and ethane, have an effect on the acid response of photophysical properties in terms of changes in conformation, excited‐state energy and charge‐transfer (CT) characteristics. In particular, the π‐conjugated molecule with ethynyl spacers exhibited a marked redshift in the fluorescence spectrum with a large Stokes shift upon the addition of acid, whereas the other molecules showed substantial quenching. The redshift in emission was studied in detail by temperature‐dependent fluorescence measurements, which indicated the transition to a CT state over the finite activation energy at the excited state. The change in the frontier molecular orbitals upon acid addition was further discussed by means of DFT calculations. 相似文献
9.
Q. H. Shen L. V. Interrante 《Journal of polymer science. Part A, Polymer chemistry》1997,35(15):3193-3205
Poly(silylenemethylene)s of the types [SiMeRCH2]n and [SiHRCH2]n were prepared by the ring-opening polymerization (ROP) of 1,3-disilacyclobutanes (DSCBs) containing n-alkyl substituents, such as C2H5, n-C3H7, n-C4H9, n-C5H11, and n-C6H13, or a phenyl group on the Si. These new polymers include a monosilicon analog of poly(styrene), [SiHPhCH2]n. Improved synthesis routes to the DSCB monomers were developed which proceed through Grignard ring closure reactions on alkoxy-substituted chlorocarbosilanes. All of these asymmetrically substituted polymers were obtained in high molecular weight form, except for [SiHPhCH2]n. The configurations of all of the polymers were found to be atactic. The aryl-substituted polymers have higher glass transition temperatures (Tgs) and thermal stability than those of the alkyl-substituted poly(silylenemethylene)s. Unlike the polyolefins of the type [C(H)(R)CH2]n, where Tg drops continuously from R = Me to n-Hex, the Tgs of the n-CnH2n+1 (n = 2–6)-substituted [SiMeRCH2]n PSM's appear to reach a maximum (at −61°C) for the R = n-Pr-substituted polymer. Moreover, where it was possible to make direct comparisons among similarly substituted atactic polymers, all of the poly(silylenemethylene)s were found to have lower Tgs than their all-carbon analogs. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 3193–3205, 1997 相似文献
10.
Yoji Fujita Yoshihiko Misumi Masayoshi Tabata Toshio Masuda 《Journal of polymer science. Part A, Polymer chemistry》1998,36(17):3157-3163
Phenylacetylenes (PAs) with bulky substituents (adamantyl, tert-butyl, and n-butyl groups) at the para-position polymerized in good yields with Fe, Rh, Mo, and W catalysts. The formed polymers were soluble, and their number-average molecular weights were in the range of thousands to hundred thousands. Whereas it is known that the poly(PA) obtained with the Fe catalyst is an insoluble cis-cisoidal polymer, the present polymers formed with the same catalyst were totally soluble in many solvents such as benzene and CHCl3. The 1H- and 13C-NMR and DSC data revealed that both of the polymers formed with the Fe and Rh catalysts had virtually all-cis structures, while those with the Mo and W catalysts had cis-rich and trans-rich structures, respectively. Cis-cisoidal and cis-transoidal structures of para-substituted poly(PAs) could not be distinguished because of their good solubility. The bulky substituents raised the temperature of cis–trans isomerization and improved the thermal stability of the polymers. Poly(p-t-BuPA) showed gas permeability higher than that of poly(PA). © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 3157–3163, 1998 相似文献
11.
J. Ramesh Babu G. Sinai-Zingde J. S. Riffle 《Journal of polymer science. Part A, Polymer chemistry》1993,31(7):1645-1651
This research has focused on the development of telechelic, aromatic amine functional, poly(dimethylsiloxane) oligomers without any aliphatic components in the polymer backbone. The intent is to produce flexible oligomers with enhanced thermal stability for incorporation into materials which will be processed at elevated temperatures. The poly(dimethylsiloxane)s have been synthesized using living polymerization of hexamethylcyclotrisiloxane with protected aniline derivatives as initiators and termination reagents for the reactions. Low molecular weight oligomers prepared using the living polymerization method can be easily converted to a range of higher, controlled molecular weight materials in redistribution reactions. A basic tetramethylammonium siloxanolate catalyst in conjunction with octamethylcyclotetrasiloxane has been used for the equilibration procedure. © 1993 John Wiley & Sons, Inc. 相似文献
12.
Fiorella Brustolin Valter Castelvetro Francesco Ciardelli Giacomo Ruggeri Arturo Colligiani 《Journal of polymer science. Part A, Polymer chemistry》2001,39(1):253-262
The main goal of this research was to verify if some advantages could be obtained by the replacement of poly(1‐vinylcarbazole), a component commonly employed for organic photorefractive materials, with various polymers containing side‐chain heteroaromatic moieties. For this purpose, poly(1‐vinylpyrrole), poly(1‐vinylindole), and some methyl‐substituted compounds of poly(1‐vinylindole) were considered. The best conditions for both monomer synthesis and polymerization were found. A first possible advantage of the new polymeric substrates resided in the values of the glass‐transition temperature, which, as expected, was constantly lower than that of poly(1‐vinylcarbazole). This could lead to a material that requires the introduction of a lower quantity of plasticizer in the final photorefractive blend to display photorefractive behavior at room temperature. In addition, the verified higher electric dipole moments of the pyrrole and indole derivatives could improve the compatibility of the optically nonlinear component required in the system, typically an azo‐molecule, by increasing its solubility inside the blend. All the synthesized vinyl monomers and polymers gave clear spectroscopic evidence of the formation of charge‐transfer complexes with 2,4,7‐trinitrofluorenylidenmalonitrile, an efficient sensitizer for photoconductivity. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 253–262, 2001 相似文献
13.
Aromatic poly(1,3,4‐oxadiazole)s and poly(amide‐1,3,4‐oxadiazole)s containing ether sulfone linkages
Sheng‐Huei Hsiao Jiun‐Hsiang Chiou 《Journal of polymer science. Part A, Polymer chemistry》2001,39(13):2271-2286
Polyhydrazides and poly(amide‐hydrazide)s were prepared from two ether‐sulfone‐dicarboxylic acids, 4,4′‐[sulfonylbis(1,4‐phenylene)dioxy]dibenzoic acid and 4,4′‐[sulfonylbis(2,6‐dimethyl‐1,4‐phenylene)dioxy]dibenzoic acid, or their diacyl chlorides with terephthalic dihydrazide, isophthalic dihydrazide, and p‐aminobenzhydrazide via a phosphorylation reaction or a low‐temperature solution polycondensation. All the hydrazide polymers were found to be amorphous according to X‐ray diffraction analysis. They were readily soluble in polar organic solvents such as N‐methyl‐2‐pyrrolidone and N,N‐dimethylacetamide and could afford colorless, flexible, and tough films with good mechanical strengths via solvent casting. These hydrazide polymers exhibited glass‐transition temperatures of 149–207 °C and could be thermally cyclodehydrated into the corresponding oxadiazole polymers in the solid state at elevated temperatures. Although the oxadiazole polymers showed a significantly decreased solubility with respect to their hydrazide prepolymers, some oxadiazole polymers were still organosoluble. The thermally converted oxadiazole polymers had glass‐transition temperatures of 217–255 °C and softening temperatures of 215–268 °C and did not show significant weight loss before 400 °C in nitrogen or air. For a comparative study, related sulfonyl polymers without the ether groups were also synthesized from 4,4′‐sulfonyldibenzoic acid and the hydrazide monomers by the same synthetic routes. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2271–2286, 2001 相似文献
14.
Jun Shao Zhaohui Tang Jingru Sun Gao Li Xuesi Chen 《Journal of Polymer Science.Polymer Physics》2014,52(23):1560-1567
Linear and four‐armed poly(l ‐lactide)‐block‐poly(d ‐lactide) (PLLA‐b‐PDLA) block copolymers are synthesized by ring‐opening polymerization of d ‐lactide on the end hydroxyl of linear and four‐armed PLLA prepolymers. DSC results indicate that the melting temperature and melting enthalpies of poly (lactide) stereocomplex in the copolymers are obviously lower than corresponding linear and four‐armed PLLA/PDLA blends. Compared with the four‐armed PLLA‐b‐PDLA copolymer, the similar linear PLLA‐b‐PDLA shows higher melting temperature (212.3 °C) and larger melting enthalpy (70.6 J g?1). After these copolymers blend with additional neat PLAs, DSC, and WAXD results show that the stereocomplex formation between free PLA molecular chain and enantiomeric PLA block is the major stereocomplex formation. In the linear copolymer/linear PLA blends, the stereocomplex crystallites (sc) as well as homochiral crystallites (hc) form in the copolymer/PLA cast films. However, in the four‐armed copolymer/linear PLA blends, both sc and hc develop in the four‐armed PLLA‐b‐PDLA/PDLA specimen, which means that the stereocomplexation mainly forms between free PDLA molecule and the inside PLLA block, and the outside PDLA block could form some microcrystallites. Although the melting enthalpies of stereocomplexes in the blends are smaller than that of neat copolymers, only two‐thirds of the molecular chains participate in the stereocomplex formation, and the crystallization efficiency strengthens. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 1560–1567 相似文献
15.
16.
Soo‐Young Park Sang‐Cheol Moon N. Venkatasubramanian Thuy D. Dang Jar‐Wha Lee B. L. Farmer 《Journal of Polymer Science.Polymer Physics》2006,44(14):1948-1957
The rigid‐rod polymers, poly(2,6‐naphthalenebenzobisoxazole) (Naph‐2,6‐PBO) and poly(1,5‐naphthalenebenzobisoxazole) (Naph‐1,5‐PBO) were synthesized by high temperature polycondensation of isomeric naphthalene dicarboxylic acids with 4,6‐diaminoresorcinol dihydrochloride in polyphosphoric acid. Expectedly, these polymers were found to have high thermal as well as thermooxidative stabilities, similar to what has been reported for other polymers of this class. The chain conformations of Naph‐2,6‐PBO and Naph‐1,5‐PBO were trans and the crystal structures of Naph‐2,6‐PBO and Naph‐1,5‐PBO had the three‐dimensional order, although the axial disorder existed for both Naph‐2,6‐PBO and Naph‐1,5‐PBO. Naph‐2,6‐PBO exhibited a more pronounced axial disorder than Naph‐1,5‐PBO because of its more linear shape. The repeat unit distance for Naph‐2,6‐PBO (14.15 Å) was found to be larger compared with that of Naph‐1,5‐PBO (12.45 Å) because of the more kinked structure of the latter. The extents of staggering between the adjacent chains in the ac projection of the crystal structure were 0.25c and 0.23c for Naph‐2,6‐PBO and Naph‐1,5‐PBO, respectively. Naph‐1,5‐PBO has a more kinked and twisted chain structure relative to Naph‐2,6‐PBO. The kinked and twisted chain structure of Naph‐1,5‐PBO in the crystal seems to prevent slippage between adjacent chains in the crystal structure. The more perfect crystal structure of Naph‐1,5‐PBO may be due to this difficulty in the occurrence of the slippage. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1948–1957, 2006 相似文献
17.
Abdullah Ekin Dean C. Webster 《Journal of polymer science. Part A, Polymer chemistry》2006,44(16):4880-4894
Libraries of 3‐aminopropyl‐terminated poly(dimethylsiloxane) (APT–PDMS) and poly(?‐caprolactone)–poly(dimethylsiloxane)–poly(?‐caprolactone) (PCL—PDMS–PCL) triblock copolymers were synthesized. Preliminary experiments were carried out to select an appropriate catalyst and route for the poly(dimethylsiloxane) synthesis, and trial experiments were conducted to verify the successful synthesis of the intended polymer compositions. Then, a series of APT–PDMS oligomers were synthesized with an automated combinatorial high‐throughput synthesis system to cover a molecular weight range of 2500–50,000 g/mol. Trial PCL—PDMS–PCL triblock copolymers were synthesized with the automated reactor system and characterized in detail with rapid gel permeation chromatography, high‐throughput Fourier transform infrared, nuclear magnetic resonance, and differential scanning calorimetry. Finally, two library synthesis experiments were carried out in which the lengths of both the poly(dimethylsiloxane) and poly(?‐caprolactone) blocks in the PCL—PDMS–PCL triblock copolymers were varied. The results obtained from these experiments demonstrated that it was possible to synthesize libraries of well‐defined APT–PDMS oligomers and PCL—PDMS–PCL triblock copolymers with an automated high‐throughput system. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4880–4894, 2006 相似文献
18.
Kumaranand Palaniappan Nadia Hundt Prakash Sista Hien Nguyen Jing Hao Mahesh P. Bhatt Yun‐Yue Han Elizabeth A. Schmiedel Elena E. Sheina Michael C. Biewer Mihaela C. Stefan 《Journal of polymer science. Part A, Polymer chemistry》2011,49(8):1802-1808
Poly(3‐hexylthiophene)‐b‐poly(4‐vinylpyridine) diblock copolymer was synthesized by RAFT polymerization of 4‐vinyl pyridine using a trithiocarbonate‐terminated poly(3‐hexylthiophene) macro‐RAFT agent. The optoelectronic properties and the morphology of the block copolymer blends with CdSe quantum dots were investigated. UV‐vis and fluorescence experiments were performed to prove the charge transfer between CdSe and poly(3‐hexylthiophene)‐b‐poly(4‐vinylpyridine) diblock copolymer. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011 相似文献
19.
Poly(3‐hydroxybutyrate) (PHB)/poly(glycidyl methacrylate) (PGMA) blends were prepared by a solution‐precipitation procedure. The compatibility and thermal decomposition behavior of the PHB/PGMA blends was studied with differential scanning calorimetry, thermogravimetric analysis, and differential thermal analysis (DTA). The blends were immiscible in the as‐blended state, but for the blends with PGMA contents of 50 wt % or more, the compatibility was dramatically changed after 1 min of annealing at 200 °C. In addition, PHB/PGMA blends showed higher thermal stability, as measured by maximum decomposition temperatures and residual weight during thermal degradation. This was probably due to crosslinking reactions of the epoxide groups in the PGMA component with the carboxyl chain ends of PHB fragments during the degradation process, and the occurrence of such reactions can be assigned to the exothermic peaks in the DTA thermograms. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 351–358, 2002 相似文献
20.
Naveenchandra Pilicode Praveen Naik K. M. Nimith Madhukara Acharya M. N. Satyanarayan Airody Vasudeva Adhikari 《先进技术聚合物》2021,32(1):131-141
Four new Schiff‐base type conjugative polymers (CPs), that is, Py 1‐4 carrying a strong electron‐withdrawing cyanopyridine scaffold coupled with different electron‐donating aromatic/heteroaromatic moieties were synthesized from their respective co‐monomers by simple poly‐condensation route. They were subjected to structural, thermal, photophysical, and electrochemical characterizations and theoretical investigations in order to identify their suitability in polymer light‐emitting diode (PLED) application. All these polymers showed good film‐forming ability and exhibited favorable photophysical behaviors with an optical bandgap in the order of 2.54‐2.68 eV. Further, their electrochemical data were used to evaluate highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) levels. Finally, Py 1‐4 were successfully employed as blue‐light emitter in the construction of new ITO/PEDOT:PSS/ Py 1‐4 /Al configured light‐emitting diodes (LED), and the fabricated devices demonstrated stable blue electroluminescence behavior endorsing an effective electrons injection in the PLEDs. 相似文献