首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this article, we discuss a scheme for dealing with Neumann and mixed boundary conditions using a compact stencil. The resulting compact algorithm for solving systems of nonlinear reaction‐diffusion equations is fourth‐order accurate in both the temporal and spatial dimensions. We also prove that the standard second‐order approximation to zero Neumann boundary conditions provides fourth‐order accuracy when the nonlinear reaction term is independent of the spatial variables. Numerical examples, including an application of this algorithm to a mathematical model describing frontal polymerization process, are presented in the article to demonstrate the accuracy and efficiency of the scheme. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2005  相似文献   

2.
In this article, we extend the fourth‐order compact boundary scheme in Liao et al. (Numer Methods Partial Differential Equations 18 (2002), 340–354) to a 3D problem and then combine it with the fourth‐order compact alternating direction implicit (ADI) method in Gu et al. (J Comput Appl Math 155 (2003), 1–17) to solve the 3D reaction‐diffusion equation with Neumann boundary condition. First, the reaction‐diffusion equation is solved with a compact fourth‐order finite difference method based on the Padé approximation, which is then combined with the ADI method and a fourth‐order compact scheme to approximate the Neumann boundary condition, to obtain fourth order accuracy in space. The accuracy in the temporal dimension is improved to fourth order by applying the Richardson extrapolation technique, although the unconditional stability of the numerical method is proved, and several numerical examples are presented to demonstrate the accuracy and efficiency of the proposed new algorithm. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

3.
We combine fourth‐order boundary value methods (BVMs) for discretizing the temporal variable with fourth‐order compact difference scheme for discretizing the spatial variable to solve one‐dimensional heat equations. This class of new compact difference schemes achieve fourth‐order accuracy in both temporal and spatial variables and are unconditionally stable due to the favorable stability property of BVMs. Numerical results are presented to demonstrate the accuracy and efficiency of the new compact difference scheme, compared to the standard second‐order Crank‐Nicolson scheme. © 2003 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 19: 846–857, 2003.  相似文献   

4.
In this article, a new compact alternating direction implicit finite difference scheme is derived for solving a class of 3‐D nonlinear evolution equations. By the discrete energy method, it is shown that the new difference scheme has good stability and can attain second‐order accuracy in time and fourth‐order accuracy in space with respect to the discrete H1 ‐norm. A Richardson extrapolation algorithm is applied to achieve fourth‐order accuracy in temporal dimension. Numerical experiments illustrate the accuracy and efficiency of the extrapolation algorithm. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

5.
This paper presents a shifted fractional‐order Jacobi orthogonal function (SFJF) based on the definition of the classical Jacobi polynomial. A new fractional integral operational matrix of the SFJF is presented and derived. We propose the spectral Tau method, in conjunction with the operational matrices of the Riemann–Liouville fractional integral for SFJF and derivative for Jacobi polynomial, to solve a class of time‐fractional partial differential equations with variable coefficients. In this algorithm, the approximate solution is expanded by means of both SFJFs for temporal discretization and Jacobi polynomials for spatial discretization. The proposed tau scheme, both in temporal and spatial discretizations, successfully reduced such problem into a system of algebraic equations, which is far easier to be solved. Numerical results are provided to demonstrate the high accuracy and superiority of the proposed algorithm over existing ones. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
In this article, an efficient fourth‐order accurate numerical method based on Padé approximation in space and singly diagonally implicit Runge‐Kutta method in time is proposed to solve the time‐dependent one‐dimensional reaction‐diffusion equation. In this scheme, we first approximate the spatial derivative using the second‐order central finite difference then improve it to fourth‐order by applying Padé approximation. A three stage fourth‐order singly diagonally implicit Runge‐Kutta method is then used to solve the resulting system of ordinary differential equations. It is also shown that the scheme is unconditionally stable, and is suitable for stiff problems. Several numerical examples are solved by the scheme and the efficiency and accuracy of the new scheme are compared with two widely used high‐order compact finite difference methods. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 27: 1423–1441, 2011  相似文献   

7.
We propose a nonintrusive reduced‐order modeling method based on the notion of space‐time‐parameter proper orthogonal decomposition (POD) for approximating the solution of nonlinear parametrized time‐dependent partial differential equations. A two‐level POD method is introduced for constructing spatial and temporal basis functions with special properties such that the reduced‐order model satisfies the boundary and initial conditions by construction. A radial basis function approximation method is used to estimate the undetermined coefficients in the reduced‐order model without resorting to Galerkin projection. This nonintrusive approach enables the application of our approach to general problems with complicated nonlinearity terms. Numerical studies are presented for the parametrized Burgers' equation and a parametrized convection‐reaction‐diffusion problem. We demonstrate that our approach leads to reduced‐order models that accurately capture the behavior of the field variables as a function of the spatial coordinates, the parameter vector and time. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2013  相似文献   

8.
Finite difference scheme to the generalized one‐dimensional sine‐Gordon equation is considered in this paper. After approximating the second order derivative in the space variable by the compact finite difference, we transform the sine‐Gordon equation into an initial‐value problem of a second‐order ordinary differential equation. Then Padé approximant is used to approximate the time derivatives. The resulting fully discrete nonlinear finite‐difference equation is solved by a predictor‐corrector scheme. Both Dirichlet and Neumann boundary conditions are considered in our proposed algorithm. Stability analysis and error estimate are given for homogeneous Dirichlet boundary value problems using energy method. Numerical results are given to verify the condition for stability and convergence and to examine the accuracy and efficiency of the proposed algorithm. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009  相似文献   

9.
This article considers the dual‐phase‐lagging (DPL) heat conduction equation in a double‐layered nanoscale thin film with the temperature‐jump boundary condition (i.e., Robin's boundary condition) and proposes a new thermal lagging effect interfacial condition between layers. A second‐order accurate finite difference scheme for solving the heat conduction problem is then presented. In particular, at all inner grid points the scheme has the second‐order temporal and spatial truncation errors, while at the boundary points and at the interfacial point the scheme has the second‐order temporal truncation error and the first‐order spatial truncation error. The obtained scheme is proved to be unconditionally stable and convergent, where the convergence order in ‐norm is two in both space and time. A numerical example which has an exact solution is given to verify the accuracy of the scheme. The obtained scheme is finally applied to the thermal analysis for a gold layer on a chromium padding layer at nanoscale, which is irradiated by an ultrashort‐pulsed laser. © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 142–173, 2017  相似文献   

10.
In this work, a new pointwise source reconstruction method is proposed. From a single pair of boundary measurements, we want to completely characterize the unknown set of pointwise sources, namely, the number of sources and their locations and intensities. The idea is to rewrite the inverse source problem as an optimization problem, where a Kohn‐Vogelius type functional is minimized with respect to a set of admissible pointwise sources. The resulting second‐order reconstruction algorithm is non‐iterative and thus very robust with respect to noisy data. Finally, in order to show the effectiveness of the devised reconstruction algorithm, some numerical experiments into two spatial dimensions are presented. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
The value of a contingent claim under a jump‐diffusion process satisfies a partial integro‐differential equation. A fourth‐order compact finite difference scheme is applied to discretize the spatial variable of this equation. It is discretized in time by an implicit‐explicit method. Meanwhile, a local mesh refinement strategy is used for handling the nonsmooth payoff condition. Moreover, the numerical quadrature method is exploited to evaluate the jump integral term. It guarantees a Toeplitz‐like structure of the integral operator such that a fast algorithm is feasible. Numerical results show that this approach gives fourth‐order accuracy in space. © 2011 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2011  相似文献   

12.
In this article, we develop numerical schemes for solving stiff reaction‐diffusion equations on annuli based on Chebyshev and Fourier spectral spatial discretizations and integrating factor methods for temporal discretizations. Stiffness is resolved by treating the linear diffusion through the use of integrating factors and the nonlinear reaction term implicitly. Root locus curves provide a succinct analysis of the A‐stability of these schemes. By utilizing spectral collocation methods, we avoid the use of potentially expensive transforms between the physical and spectral spaces. Numerical experiments are presented to illustrate the accuracy and efficiency of these schemes. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 27: 1113–1129, 2011  相似文献   

13.
In this paper, a fast second‐order accurate difference scheme is proposed for solving the space–time fractional equation. The temporal Caputo derivative is approximated by ?L2 ‐1σ formula which employs the sum‐of‐exponential approximation to the kernel function appeared in Caputo derivative. The second‐order linear spline approximation is applied to the spatial Riemann–Liouville derivative. At each time step, a fast algorithm, the preconditioned conjugate gradient normal residual method with a circulant preconditioner (PCGNR), is used to solve the resulting system that reduces the storage and computational cost significantly. The unique solvability and unconditional convergence of the difference scheme are shown by the discrete energy method. Numerical examples are given to verify numerical accuracy and efficiency of the difference schemes.  相似文献   

14.
In this article a sixth‐order approximation method (in both temporal and spatial variables) for solving nonhomogeneous heat equations is proposed. We first develop a sixth‐order finite difference approximation scheme for a two‐point boundary value problem, and then heat equation is approximated by a system of ODEs defined on spatial grid points. The ODE system is discretized to a Sylvester matrix equation via boundary value method. The obtained algebraic system is solved by a modified Bartels‐Stewart method. The proposed approach is unconditionally stable. Numerical results are provided to illustrate the accuracy and efficiency of our approximation method along with comparisons with those generated by the standard second‐order Crank‐Nicolson scheme as well as Sun‐Zhang's recent fourth‐order method. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009  相似文献   

15.
In this article, we apply the univariate multiquadric (MQ) quasi‐interpolation to solve the hyperbolic conservation laws. At first we construct the MQ quasi‐interpolation corresponding to periodic and inflow‐outflow boundary conditions respectively. Next we obtain the numerical schemes to solve the partial differential equations, by using the derivative of the quasi‐interpolation to approximate the spatial derivative of the differential equation and a low‐order explicit difference to approximate the temporal derivative of the differential equation. Then we verify our scheme for the one‐dimensional Burgers' equation (without viscosity). We can see that the numerical results are very close to the exact solution and the computational accuracy of the scheme is ??(τ), where τ is the temporal step. We can improve the accuracy by using the high‐order quasi‐interpolation. Moreover the methods can be generalized to the other equations. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2006  相似文献   

16.
17.
In this paper, an extension of the structured total least‐squares (STLS) approach for non‐linearly structured matrices is presented in the so‐called ‘Riemannian singular value decomposition’ (RiSVD) framework. It is shown that this type of STLS problem can be solved by solving a set of Riemannian SVD equations. For small perturbations the problem can be reformulated into finding the smallest singular value and the corresponding right singular vector of this Riemannian SVD. A heuristic algorithm is proposed. Some examples of Vandermonde‐type matrices are used to demonstrate the improved accuracy of the obtained parameter estimator when compared to other methods such as least squares (LS) or total least squares (TLS). Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

18.
We prove a decomposition theorem for even‐hole‐free graphs. The decompositions used are 2‐joins and star, double‐star and triple‐star cutsets. This theorem is used in the second part of this paper to obtain a polytime recognition algorithm for even‐hole‐free graphs. © 2002 John Wiley & Sons, Inc. J Graph Theory 39: 6–49, 2002  相似文献   

19.
The numerical solution for the one‐dimensional complex fractional Ginzburg–Landau equation is considered and a linearized high‐order accurate difference scheme is derived. The fractional centered difference formula, combining the compact technique, is applied to discretize fractional Laplacian, while Crank–Nicolson/leap‐frog scheme is used to deal with the temporal discretization. A rigorous analysis of the difference scheme is carried out by the discrete energy method. It is proved that the difference scheme is uniquely solvable and unconditionally convergent, in discrete maximum norm, with the convergence order of two in time and four in space, respectively. Numerical simulations are given to show the efficiency and accuracy of the scheme. © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 105–124, 2017  相似文献   

20.
In this study, new high‐order backward semi‐Lagrangian methods are developed to solve nonlinear advection–diffusion type problems, which are realized using high‐order characteristic‐tracking strategies. The proposed characteristic‐tracking strategies are second‐order L‐stable and third‐order L(α)‐stable methods, which are based on a classical implicit multistep method combined with a error‐correction method. We also use backward differentiation formulas and the fourth‐order finite‐difference scheme for diffusion problem discretization in the temporal and spatial domains, respectively. To demonstrate the adaptability and efficiency of these time‐discretization strategies, we apply these methods to nonlinear advection–diffusion type problems such as the viscous Burgers' equation. Through simulations, not only the temporal and spatial accuracies are numerically evaluated but also the proposed methods are shown to be superior to the compared existing characteristic‐tracking methods under the same rates of convergence in terms of accuracy and efficiency. Finally, we have shown that the proposed method well preserves the energy and mass when the viscosity coefficient becomes zero.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号