首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
A novel poly(N‐isopropylacrylamide) (PNIPA)/PNIPA interpenetrating polymer network (IPN) was synthesized and characterized. In comparison with conventional PNIPA hydrogels, the shrinking rate of the IPN hydrogel increased when gels, swollen at 20 °C, were immersed in 50 °C water. The phase‐transition temperature of the IPN gel remained unchangeable because of the same chemical constituent in the PNIPA gel. The reswelling kinetics were slower than those of the PNIPA hydrogel because of the higher crosslinking density of the IPN hydrogel. The IPN hydrogel had better mechanical strength because of its higher crosslinking density and polymer volume fraction. The release behavior of 5‐fluorouracil (5‐Fu) from the IPN hydrogel showed that, at a lower temperature, the release of 5‐Fu was controlled by the diffusion of water molecules in the gel network. At a higher temperature, 5‐Fu inside the gel could not diffuse into the medium after a burst release caused by the release of the drug on the surface of the gel. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1249–1254, 2004  相似文献   

2.
Novel tricontinuous membranes consisting of well‐defined hydrophilic poly(ethylene glycol) (PEG) and lipophilic polyisobutylene (PIB) segments crosslinked by oxyphilic poly(pentamethylcyclopentasiloxane) (PD5) domains have been synthesized and characterized. Tricontinuity arises because the three membrane constituents—PEG, PIB, and PD5—are mutually incompatible and give rise to three independent cocontinuous phases (channels). The continuous PEG segments impart swelling in water (hydrogel character), the rubbery PIB moieties provide strength, and the PD5 domains provide crosslinking and enhanced O2 permeability. The synthesis involves the random cohydrosilation of various lengths (number‐average molecular weights) of α,ω‐diallyl‐PEG and α,ω‐diallyl‐PIB segments by pentamethylcyclopentasiloxane (D5H) followed by water‐mediated oxidation of the SiH groups of the D5H to SiOH groups, which immediately polycondense to PD5 domains. Membranes containing about equal amounts of PEG, PIB, and PD5 give rise to tricontinuous morphologies that allow the simultaneous permeation of water, heptane, and oxygen via three cocontinuous channels. The number‐average molecular weight of the PEG segment, that is, the number‐average molecular weight of the hydrophilic segment between two PD5 crosslink sites, determines the dimensions (pore sizes) of the channels through which water can permeate. A method has been developed for studying the oxygen permeability of membranes. The microarchitecture of the membranes has been investigated with selective swelling experiments and Fourier transform infrared spectroscopy, their mechanical properties have been examined in the water‐swollen state with Instron measurements, and their bulk morphologies and thermal degradation have been determined with differential scanning calorimetry and thermogravimetric analysis, respectively. The findings have been interpreted in terms of phase‐separated PEG, PIB, and PD5 microdomains. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1209–1217, 2002  相似文献   

3.
Two new telechelic amphiphilic triblock copolymers, HE3‐PEG‐b‐PDMS‐b‐PEG‐HE3 and HE3‐PEG‐b‐PDMS‐b‐PEG‐HE3, i.e., sequence‐reversed triblocks of hydrophilic poly(ethylene glycol) (PEG) and hydrophobic polydimethylsiloxane (PDMS) segments fitted with photocrosslinkable tri[2‐(3,4‐cyclohexane oxide)ethyl‐dimethylsiloxy]silane (HE3) termini, were synthesized, characterized, photocrosslinked to amphiphilic conetworks (APCNs), and the properties of the APCNs were analyzed. APCNs in which the crosslinking sites are located in the hydrophobic domains exhibited significantly better mechanical properties than those in which the crosslinks were in the hydrophilic domains. The stiff domains formed of the UV‐crosslinkable HE3 chain‐end substituents provide not only crosslinking but reinforcement as well. The crosslinking/reinforcement efficiency was greatly enhanced by the addition of excess HE3. Water‐swollen APCNs were optically clear and exhibited mechanical properties appropriate for biomedical application. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 174–185, 2008  相似文献   

4.
Select characteristics and properties of a series of ideal tetrafunctional amphiphilic conetworks consisting of random poly(ethylene glycol) (PEG) and polydimethylsiloxane (PDMS) segments crosslinked by a novel dual‐purpose crosslinker/extender were determined. The overall composition of the conetworks was varied in the 16–40% PEG range, and membranes were prepared by polymerizing/crosslinking charges in molds. Membranes were characterized by equilibrium swelling (both in water and n‐heptane) and by determining their oxygen permeabilities and select mechanical properties. Swelling in water increases, whereas in heptane it decreases with increasing PEG content. Significant swelling in both solvents indicates bicontinuous (bipercolating) PEG and PDMS phases. Bicontinuity is reached with ~13% PEG in the conetworks. The oxygen permeabilities of optically clear water‐swollen membranes containing 24, 32, and 40 wt % PEG are ~350, ~245 and ~185 barrers, respectively, i.e., oxygen permeability decreases by increasing the hydrophilic constituent. These oxygen permeabilities are far superior to those of contemporary soft contact lenses. The tensile strengths and moduli of water‐swollen membranes decrease, while elongations increase, with increasing PEG content. Dry membranes exhibit first order transitions at ?52 and ~46 °C indicating phase‐separated crystalline PDMS and PEG domains, respectively. Both dry and water‐swollen membranes are optically clear, indicating the presence of PEG and PDMS domains with dimensions well below the wavelength of visible light. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4965–4971, 2005  相似文献   

5.
Our main objective was the design, synthesis, characterization, and testing of a novel class of materials, thermoplastic amphiphilic conetworks (TP‐APCNs). A further objective was the evaluation of TP‐APCNs as biomaterials, for example, as immunoisolatory membranes in a bioartificial pancreas, or as extended‐wear soft contact lenses. The synthesis of the first TP‐APCNs was accomplished by blending an amphiphilic graft polymer, poly(dimethyl acryl amide)‐g‐polydimethylsiloxane (PDMAAm‐g‐PDMS), with a commercial PDMS‐containing polyurethane (PU). The common PDMS segments coalesce and form a single phase, whereas the hard/crystalline segments of the PU physically crosslink the blend. The properties of TP‐APCNs can be controlled by the graft/PU ratio and segment molecular weights. TP‐APCNs with cocontinuous hydrophilic and hydrophobic phases were prepared as demonstrated by swelling in water and n‐heptane. Depending on the blend ratio and molecular weights, optically clear water‐swollen TP‐APCNs with 0.5–4 MPa tensile strength, 70–280% elongation, together with 2–11 × 10?7 cm2/s glucose permeability, and 1.2–8 × 10?8 cm2/s insulin permeability were prepared. TP‐APCNs are processible by casting and molding. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 682–691, 2009  相似文献   

6.
This article concerns the synthesis and characterization of novel tricomponent amphiphilic membranes consisting of hydrophilic poly(ethylene glycol) (PEG) and hydrophobic polydimethylsiloxane (PDMS) segments cocrosslinked and reinforced by octasilane polyhedral oligomeric silsesquioxane (octasilane‐POSS) cages. Rapid and efficient network synthesis was effected by cocrosslinking diallyl‐telechelic PEG (A‐PEG‐A) and divinyl‐telechelic PDMS (V‐PDMS‐V) with pentamethylpentacyclosiloxane (D5H), using Karstedt's catalyst in conjunction with Et3N cocatalyst and water. Films were prepared by pouring charges in molds and crosslinking by heating at 60 °C for several hours. The films were characterized by sol fractions and equilibrium swelling both in hexane and water, extent of crosslinking, contact angle hysteresis, oxygen permeability, thermogravimetric analysis, and mechanical properties. The crosslinking of octasilane‐POSS achieved by the same catalyst system was studied in separate experiments. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4337–4352, 2004  相似文献   

7.
The characteristics of poly(ethylene glycol) (PEG)–acrylate hydrogel networks were investigated as a function of the ethanol–water solvent composition during free‐radical crosslinking copolymerization. Macromonomer (88% ω‐methoxy‐PEG–acrylate and 10% ω‐phenoxy‐PEG–acrylate) and crosslinker (2% PEG–diacrylate) concentrations were kept constant. As the copolymerization progressed, the polymer solution in 100% ethanol became increasingly turbid, indicating the development of a heterogeneous network structure. In 100% water, however, the initially turbid polymer solution became increasingly transparent as the crosslinking copolymerization progressed. All the gels were optically clear upon equilibration in water. Kinetic studies, with attenuated total reflectance‐infrared, showed a long induction period, along with a lowered reaction rate, in 100% ethanol, and a decrease in conversion with an increase in ethanol content. These results agree with the UV analysis of the sol fractions, which indicated an increase in the amounts of unreacted PEG–acrylates with an increase in the ethanol content. The gels which were formed with a high ethanol concentration exhibited lower Young's modulus and higher swelling ability, suggesting that the network structure was significantly affected by the solvent composition during free‐radical crosslinking copolymerization. From the stress–strain and swelling experiments, the Flory–Huggins interaction parameter was evaluated. The creep characteristics of the hydrogels were modeled with two Kelvin elements. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2677–2684, 2002  相似文献   

8.
We investigated the effect of charge densities of the gel network and ionic strength of solution on swelling behaviors of ionized gels. We used the modified double‐lattice model, Flory–Erman's elastic model, and the ideal Donnan theory to describe swelling behaviors of the electrolyte bounded hydrogels. Energy parameters (?/k, δ?/k) were obtained from fitting liquid–liquid equilibria data of the linear poly‐N‐isopropylacrylamide/water system and two adjustable model parameters obtained from a nonelectrolyte hydrogel system. Calculated values agreed with experimental data for the given systems. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2333–2338, 2002  相似文献   

9.
Self‐assembly of amphiphilic ABA random triblock copolymers in water serves as a novel approach to create unique structure micelles connected with flexible linkages. The ABA triblock copolymers consist of amphiphilic random copolymers bearing hydrophilic poly(ethylene glycol) and hydrophobic dodecyl pendants as the A segments and a hydrophilic poly(ethylene oxide) (PEO) as the middle B segment. The A block is varied in dodecyl methacrylate content of 20%–50% and degree of polymerization (DP) of 100‐200. By controlling the composition and DP of the A block, various architectures can be tailor‐made as micelles in water: PEO‐linked double core unimer micelles, PEO‐looped unimer or dimer micelles, and multichain micelles. Those PEO‐linked or looped micelles further exhibit thermoresponsive solubility in water. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 313–321  相似文献   

10.
Tailor‐made urethane acrylate anionomer (UAA) chains show higher viscosity and polyelectrolyte behavior in dimethyl sulfoxide (DMSO) than in water and toluene. Water is a nonsolvent for the hydrophobic soft segment but a good solvent for the hydrophilic hard segments, so hydrophobic segments are aggregated and form particles in the water phase, resulting in a smaller viscosity. Also, the fact that the viscosity of UAA chains is lowest in toluene can be interpreted as a result of ionic aggregation due to the nonpolarity of toluene. The structures of UAA networks dramatically change with the nature of the solvents used (i.e., the interaction between the UAA chains and the solvents used changes); this is confirmed by the results of tensile property, morphology, and wide‐angle X‐ray scattering data. Ionic aggregation formed in UAA/toluene (UATG networks) and hydrophobic aggregation formed in UAA/water (UAAG networks) are locked in by a chemical crosslinking reaction and result in a greater modulus and X‐ray scattering intensity. The greater elongation and swelling ratio in methylene chloride of UATG networks prepared in a UAA/toluene solution indicates that toluene is a better solvent than DMSO for the hydrophobic segments of UAA chains. Also, the greater swelling ratio in a pH 11 buffer solution and greater modulus of UAAG networks show that water is a better solvent than DMSO for hydrophilic ionic segments. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1903–1916, 2000  相似文献   

11.
Telechelic urethane acrylate anionomer (UAA) chain showed less viscosity and polyelectrolyte behavior in water than dimethyl acetamide (DMAc) because of hydrophobic aggregation. UAA networks prepared in different solvents (water and DMAc) exhibited very different swelling behaviors in the same swelling medium, which can be interpreted as due to the very different microstructures formed in the solvents. UAA networks prepared with water (UAHG networks) had microphase‐separated hydrophilic and hydrophobic domains, whereas UAA networks synthesized with DMAc (UADG networks) had relatively homogeneous network structures. The mechanical property of the UAHG and UADG networks, measured with a dynamic mechanical analyzer, was also very sensitive to the solvent type used during the crosslinking reaction. UAHG networks with a microphase‐separated structure had a higher modulus than UADG networks. The results of the mechanical property measurements showed that water was a much better solvent for the hydrophilic hard segments of UAA chain than DMAc, even though DMAc dissolved both hydrophilic and hydrophobic segments of UAA chain. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2081–2095, 2000  相似文献   

12.
Homogeneous poly(2-hydroxyethyl methacrylate) (PHEMA) hydrogel exhibits a narrow range of swelling at equilibrium in water (% H2O, 41.09 ± 0.15 standard error of the mean of 24 samples), regardless of the dilution of the monomer solution and relatively low level of crosslinking. It is postulated that PHEMA hydrogel has, in addition to its covalently linked network structure, a secondary structure stabilized by hydrophobic bonding. The addition of microsolutes to the hydrogel seems to confirm this hypothesis. The hydrogel swells beyond its swelling equilibrium in water in presence of urea and its methyl derivatives. Swelling is also induced by organic solvents like alcohol and acetone, and by anions like iodide, acetate, trichloroacetate, and thiocyanate. Chlorides and sulfates produce a less swollen hydrogel than pure water, while bromides and cetylpyridinium chloride, in the concentrations tested, induce only a slight deswelling of the gel. When PHEMA gel prepared in organic solvent–water solutions is placed in water, the gel passes through an opaque state before becoming transparent again. This phenomenon is interpreted as being caused by the inability of water to solvate the hydrophilic ends of the unorganized polymer segments. Homogeneity returns to the gel after a rearrangement of the chains, directed by the interaction of the hydrophobic portions of the polymer segments, exposing to the solvent–water most of the hydrophilic sites in the network.  相似文献   

13.
Three series of semi‐interpenetrating polymer networks, based on crosslinked poly(N‐isopropyl acrylamide) (PNIPA) and 1 wt % nonionic or ionic (cationic and anionic) linear polyacrylamide (PAAm), were synthesized to improve the mechanical properties of PNIPA gels. The effect of the incorporation of linear polymers into responsive networks on the temperature‐induced transition, swelling behavior, and mechanical properties was studied. Polymer networks with four different crosslinking densities were prepared with various molar ratios (25:1 to 100:1) of the monomer (N‐isopropyl acrylamide) to the crosslinker (methylenebisacrylamide). The hydrogels were characterized by the determination of the equilibrium degree of swelling at 25 °C, the compression modulus, and the effective crosslinking density, as well as the ultimate hydrogel properties, such as the tensile strength and elongation at break. The introduction of cationic and anionic linear hydrophilic PAAm into PNIPA networks increased the rate of swelling, whereas the presence of nonionic PAAm diminished it. Transition temperatures were significantly affected by both the crosslinking density and the presence of linear PAAm in the hydrogel networks. Although anionic PAAm had the greatest influence on increasing the transition temperature, the presence of nonionic PAAm caused the highest dimensional change. Semi‐interpenetrating polymer networks reinforced with cationic and nonionic PAAm exhibited higher tensile strengths and elongations at break than PNIPA hydrogels, whereas the presence of anionic PAAm caused a reduction in the mechanical properties. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3987–3999, 2004  相似文献   

14.
We present novel redox‐responsive hydrogels based on poly(N‐isopropylacrylamide) or poly(acrylamide), consisting of a reversible disulfide crosslinking agent N,N′‐bis(acryloyl)cystamine and a permanent crosslinking agent N,N′‐methylenebisacrylamide for microfluidic applications. The mechanism of swelling/deswelling behavior starts with the cleavage and reformation of disulfide bonds, leading to a change of crosslinking density and crosslinking points. Raman and ultraviolet‐visible spectroscopy confirm that conversion efficiency of thiol–disulfide interchange up to 99%. Rheological analysis reveals that the E modulus of hydrogel is dependent on the crosslinking density and can be repeatedly manipulated between high‐ and low‐stiffness states over at least 5 cycles without significant decrease. Kinetic studies showed that the mechanical strength of the gels changes as the redox reaction proceeds. This process is much faster than the autonomous diffusion in the hydrogel. Moreover, cooperative diffusion coefficient (Dcoop) indicates that the swelling process of the hydrogel is affected by the reduction reaction. Finally, this reversibly switchable redox behavior of bulky hydrogel could be proven in microstructured hydrogel dots through short‐term photopatterning process. These hydrogel dots on glass substrates also showed the desired short response time on cyclic swelling and shrinking processes known from downsized hydrogel shapes. Such stimuli‐responsive hydrogels with redox‐sensitive crosslinkers open a new pathway in exchanging analytes for sensing and separating in microfluidics applications. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 2590–2601  相似文献   

15.
The objective of this research was to develop new strategies for the synthesis of novel optically clear highly oxygen permeable membranes exhibiting appropriate water uptake and mechanical properties for possible ophthalmic applications. Thus a series of bicontinuous amphiphilic conetworks containing well‐defined poly‐ (ethylene glycol) and polydimethylsiloxane segments crosslinked by three novel crosslinking/modifying agents were synthesized, characterized, and evaluated. This paper concerns the design and synthesis of the crosslinking/modifying agents (see Fig. 2 ), and their use for the synthesis of clear, highly oxygen permeable amphiphilic membranes. Select membranes exhibit outstanding oxygen permeabilities (>200 barrers) far superior to contemporary commercial soft contact lenses, together with mechanical properties and water uptake appropriate for extended wear soft contact lens application. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 308–316, 2007  相似文献   

16.
We studied the behavior of absorbed water in equilibrium‐swollen poly(vinyl alcohol) derivative hydrogels by differential scanning calorimetry (DSC), 1H nuclear magnetic resonance, and wide‐angle X‐ray diffraction. By DSC, three types of water were detected, and their relative fractions were estimated. With this technique we also calculated the pore size for every sample. From the nonexponential decay of the spin–spin relaxation data, we distinguished two environmental states of the absorbed water in the samples. The relaxation times were determined. From these data, we calculated the fractions of each type of water for every hydrogel and related them to the degree of crosslinking. The X‐ray study indicated that the water absorbed in these hydrogels forms a single crystalline phase on cooling. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1462–1467, 2003  相似文献   

17.
Nanophase‐separated poly(2‐hydroxyethyl methacrylate)‐l‐polyisobutylene (PHEMA‐l‐PIB) amphiphilic conetworks were obtained by crosslinking α,ω‐bismethacrylate‐terminated polyisobutylene (PIB) via copolymerization with silylated 2‐hydroxyethyl methacylate, followed by the hydrolysis of the silylether groups. Morphology development of a sample containing 64% PIB was monitored by means of transmission electron microscopy (TEM), atomic force microscopy (AFM), and small‐angle X‐ray scattering. For comparison, the morphology of a sample containing 53% PIB was investigated by AFM. The dry conetworks exhibited hydrophilic and hydrophobic phases with average 8–10‐nm domain sizes and were swellable in water as well as in heptane. Swelling amphiphilic conetworks with aqueous cadmium–chloride solution followed by exposure to H2S resulted in nanosized CdS clusters located in the amphiphilic conetworks, that is, for the first time, new inorganic–organic hybrid materials composed of CdS semiconducting nanocrystals and PHEMA‐l‐PIB amphiphilic conetworks were prepared. © 2001 John Wiley & Sons, Inc. J Polym Sci B Part B: Polym Phys 39: 1429–1436, 2001  相似文献   

18.
Intercalated and exfoliated nanocomposites were prepared by extrusion and injection of polyamide‐6 and highly swollen or slightly swollen montmorillonite, respectively. The microstructure of the nanocomposites has been studied previously. In this article, we investigated the influence of the preferential orientation of the montmorillonite sheets on the mechanical properties of the nanocomposites. Dynamic mechanical analysis and tensile tests showed that the elastic modulus depends mainly on the filler loading. A parallel coupling could well account for the behavior of the nanocomposites. The calculated elastic and storage moduli of montmorillonite were set to 140 and 40 GPa, respectively. Compression tests were performed to study the anisotropy of the mechanical properties. The elastic modulus and flow strain were sensitive to the filler orientation. A Tandon–Weng approach was applied to consider the geometry of the filler. In all low‐deformation tests, no significant difference between intercalated and exfoliated systems was observed. Finally, the influence of the dispersion and exfoliation state of the filler on the ultimate properties of the nanocomposites (tensile tests) is discussed. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 40: 272–283, 2002  相似文献   

19.
The synthesis and molecular characterization of a new amphiphilic conetwork (APCN) designed for silicone hydrogel use is described. The synthesis strategy, outlined in Scheme 1 , calls for the preparation, by the RAFT technique, of a new methacrylate‐telechelic amphiphilic pentablock, MA‐PHEA‐b‐PDMAAM‐b‐PDMS‐b‐PDMAAm‐b‐PHEA‐MA, and its crosslinking to the target APCN. The sketch shows the architecture of the APCN (dotted lines, PDMAAm; solid lines, PDMS; clusters, MA‐based crosslinking sites; see Fig. 3 ). All six synthesis steps proceed smoothly and efficiently, and the products are optically clear, colorless membranes exhibiting properties appropriate for ophthalmic use. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4284–4290, 2007  相似文献   

20.
The binding and release capabilities of a hydrogel series, constructed of hydrophilic poly(ethylene glycol) segments and hydrophobic dendritic junctions [poly (benzyl ether)s], are evaluated in aqueous media. The environmental response of the amphiphilic networks is also tested in water at three pH values: 1.5, 7.0, and 10.1. The highest swelling ratio is observed under acidic conditions and varies between 3.7 and 6.5, depending on the crosslinking density and dendrimer generation. Gel specimens with embedded indicators react within 3–6 s with a clear color switch to the change in the pH of the surrounding medium. The experiments with model anionic and cationic indicators and stains show that the hydrogels have basic interiors. The gel binding capabilities depend on the water solubility of the substrate and on the size of the incorporated dendritic fragments. Model release studies have been performed at 37 °C and pHs 1.5, 7.0, and 10.1. The observed phenomena are explained by the transformations in the structure and charge that both the networks and the model compounds undergo with the changes in the pH of the aqueous medium. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4017–4029, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号