首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis of trimethoxysilane end‐capped linear polystyrene (PS) and star‐branched PS and subsequent silicon (Si) surface modification with linear and star polymers are described. Trimethoxysilane terminated PS was synthesized using sec‐butyl lithium initiated anionic polymerization of styrene and subsequent end‐capping of the living anions with p‐chloromethylphenyl trimethoxysilane (CMPTMS). 1H and 29Si NMR spectroscopy confirmed the successful end‐capping of polystyryllithium with the trimethoxysilane functional group. The effect of a molar excess of end‐capper on the efficiency of functionalization was also investigated, and the required excess increased for higher molar mass oligomers. Acid catalyzed hydrolysis and condensation of the trimethoxysilane end‐groups resulted in star‐branched PS, and NMR spectroscopy and SEC analysis were used to characterize the star polymers. This is the first report of core‐functionalized star‐shaped polymers as surface modifiers and the first comparative study showing differences in surface topography between star and linear polymer modified surfaces. Surface‐sensitive techniques such as ellipsometry, contact angle goniometry, and AFM were used to confirm the attachment of star PS, as well as to compare the characteristics of the star and linear PS modified Si surfaces. The polymer film properties were referenced to polymer dimensions in dilute solution, which revealed that linear PS chains were in the intermediate brush regime and the star‐branched PS produced a surface with covalently attached chains in the mushroom regime. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3655–3666, 2005  相似文献   

2.
The linear and star‐shaped poly(L‐lactic acid) (PLLA) with similar molecular weight were prepared and their physical properties such as thermal properties, rheological properties, and crystallization behavior in quiescent and dynamic states were compared. The differential scanning calorimetry showed that the linear PLLA gave higher glass transition, melting, and crystallization temperatures than the star‐shaped one. In dynamic crystallization, the linear PLLA gave longer induction time and longer overall crystallization time than the star‐shaped one, although the former gave higher rate of crystallization in quiescent crystallization. However, wide‐angle X‐ray diffractometer(WAXD) analysis revealed that the linear and star‐shaped PLLA developed the same crystal structure and application of shear had little effect on crystal structure. As predicted, the linear PLLA gave higher crystallinity than the star‐shaped PLLA. In the dilute solutions, the linear PLLA exhibited higher intrinsic viscosity than the star‐shaped one. In the concentrated solutions, the star‐shaped PLLA gave higher values of dynamic viscosity, storage, and loss moduli than the linear one. Further, the former exhibited more noticeable shear thinning behavior and greater dependence of rheological properties on temperature than the latter. For both PLLA melts, the modified Cole–Cole plot gave slope less than 2. Of two PLLA polymers the star‐shaped PLLA gave smaller slope than the linear one. In addition, the former showed greater change of the slope with temperature than the latter. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 939–946, 2004  相似文献   

3.
Both star‐shaped poly(ε‐caprolactone) (PCL) having 4 arms (4sPCL) and 6 arms (6sPCL) and linear PCL having 1 arm (LPCL) and 2 arms (2LPCL) were synthesized and then investigated for inclusion complexation with α‐cyclodextrin (α‐CD). The supramolecular inclusion complexes (ICs) were in detail characterized by 1H NMR, differential scanning calorimetry, thermogravimetric analysis, wide angle X‐ray diffraction, solid‐state carbon nuclear magnetic resonance spectroscopy using cross‐polarization and magic‐angle spinning, and Fourier transform infrared, respectively. The stoichiometry (CL:CD, mol:mol) of all ICs increased with the increasing branch arm of PCL polymers, and it was in the order of α‐CD‐6sPCL1 ICs > α‐CD‐4sPCL ICs > α‐CD‐2LPCL ICs > α‐CD‐LPCL ICs. All analyses indicated that the branch arms of star‐shaped PCL polymers were included into the hydrophobic α‐CD cavities and their original crystalline properties were completely suppressed. Moreover, the ICs of star‐shaped PCL with α‐CD had a channel‐type crystalline structure similar to that formed between the linear PCL and α‐CD. Furthermore, the thermal stability of the free PCL polymers probably controlled that of the guest polymers included in the ICs. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4721–4730, 2005  相似文献   

4.
A new bipyridine‐functionalized dithioester was synthesized and further used as a RAFT agent in RAFT polymerization of styrene and N‐isopropylacrylamide. Kinetics analysis indicates that it is an efficient chain transfer agent for RAFT polymerization of the two monomers which produce polystyrene and poly(N‐isopropylacrylamide) polymers with predetermined molecular weights and low polydispersities in addition to the end functionality of bipyridine. The bipyridine end‐functionalized polymers were further used as macroligands for the preparation of star‐shaped metallopolymers. Hydrophobic polystyrene macroligand combined with hydrophiphilic poly(N‐isopropylacrylamide) was complexed with ruthenium ions to produce amphiphilic ruthenium‐cored star‐shaped metallopolymers. The structures of these synthesized metallopolymers were further elucidated by UV–vis, fluorescence, size exclusion chromatography (SEC), and differential scanning calorimetry (DSC) as well as NMR techniques. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4225–4239, 2007  相似文献   

5.
Star polymers with end‐functionalized arm chains (surface‐functionalized star polymers) were synthesized by the in situ linking reaction between ethylene glycol dimethacrylate (linking agent) and an α‐end‐functionalized linear living poly(methyl methacrylate) in RuCl2(PPh3)3‐catalyzed living radical polymerization; the terminal on the surface functionalities included amides, alcohols, amines, and esters. The star polymers were obtained in high yields (75–90%) with initiating systems consisting of a functionalized 2‐chloro‐2‐phenylacetate or ‐acetamide [F? C(O)CHPhCl; F = nPrNH? , HOCH2CH2O? , Me2NCH2CH2O? , or EtO? ; initiator] and n‐Bu3N (additive). The yield was lower with a functionalized 2‐bromoisobutyrate [Me2NCH2CH2OC(O)CMe2Br] initiator or with Al(Oi‐Pr)3 as an additive. Multi‐angle laser light scattering analysis showed that the star polymers had arm numbers of 10–100, radii of gyration of 6–23 nm, and weight‐average molecular weights of 1.3 × 105 to 3.0 × 106, which could be controlled by the molar ratio of the linking agent to the linear living polymers. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1972–1982, 2002  相似文献   

6.
The spontaneous reaction of unsaturated double bonds induced by the fragmentation of ether bonds is presented as a method to obtain a crosslinked polymer material. Poly(1,5‐dioxepan‐2‐one) (PDXO) was synthesized using three different polymerization techniques to investigate the influence of the synthesis conditions on the ether bond fragmentation. It was found that thermal fragmentation of the ether bonds in the polymer main chain occurred when the synthesis temperature was 140 °C or higher. The double bonds produced reacted spontaneously to form crosslinks between the polymer chains. The formation of a network structure was confirmed by Fourier transform infrared spectrometry and differential scanning calorimetry. In addition, the low molar mass species released during hydrolysis of the DXO polymers were monitored by ESI‐MS and MALDI‐TOF‐MS. Ether bond fragmentation also occurred during the ionization in the electrospray instrument, but predominantly in the lower mass region. No fragmentation took place during MALDI ionization, but it was possible to detect water‐soluble DXO oligomers with a molar mass up to approximately 5000 g/mol. The results show that ether bond fragmentation can be used to form a network structure of PDXO. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7258–7267, 2008  相似文献   

7.
The synthesis of a new compound, 2‐[(4‐bromomethyl)phenyl]‐4,5‐dihydro‐4,4‐dimethyloxazole ( 1 ), and its utility in the synthesis of oxazoline‐functionalized polystyrene by atom transfer radical polymerization (ATRP) methods are described. Aromatic oxazolyl‐functionalized polymers were prepared by the ATRP of styrene, initiated by ( 1 ) in the presence of copper(I) bromide/2,2′‐bipyridyl catalyst system, to afford the corresponding α‐oxazolyl‐functionalized polystyrene ( 2 ). The polymerization proceeded via a controlled free radical polymerization process to produce the corresponding α‐oxazolyl‐functionalized polymers with predictable number‐average molecular weights, narrow molecular weight distributions in high‐initiator efficiency reactions. Post‐ATRP chain end modification of α‐oxazolyl‐functionalized polystyrene ( 2 ) to form the corresponding α‐carboxyl‐functionalized polystyrene ( 3 ) was achieved by successive acid‐catalyzed hydrolysis and saponification reactions. The polymerization processes were monitored by gas chromatography analyses. The unimolecular‐functionalized initiator and functionalized polymers were characterized by thin layer chromatography, spectroscopy, size exclusion chromatography, and nonaqueous titration analysis. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011.  相似文献   

8.
Linear and star‐like amphiphilic diblock copolymers were synthesized by the ring‐opening polymerization of ε‐caprolactone and γ‐2‐[2‐(2‐methoxyethoxy)ethoxy]ethoxy‐ε‐caprolactone monomers using zinc undecylenate as a catalyst. These polymers have potential applications as micellar drug delivery vehicles, therefore the properties of the linear and 4‐arm star‐like structures were examined in terms of their molecular weight, viscosity, thermodynamic stability, size, morphology, and drug loading capacity. Both the star‐like and linear block copolymers showed good thermodynamic stability and degradability. However, the star‐like polymers were shown to have increased stability at lower concentrations with a critical micelle concentration (CMC) of 5.62 × 10?4 g L?1, which is less than half the concentration of linear polymer needed to form micelles. The star‐like polymeric micelles showed smaller sizes when compared with their linear counterparts and a higher drug loading capacity of doxorubicin, making them better suited for drug delivery purposes. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3601–3608  相似文献   

9.
The comparative studies on the miscibility and phase behavior between the blends of linear and star‐shaped poly(2‐methyl‐2‐oxazoline) with poly(vinylidene fluoride) (PVDF) were carried out in this work. The linear poly(2‐methyl‐2‐oxazoline) was synthesized by the ring opening polymerization of 2‐methyl‐2‐oxazoline in the presence of methyl p‐toluenesulfonate (MeOTs) whereas the star‐shaped poly(2‐methyl‐2‐oxazoline) was synthesized with octa(3‐iodopropyl) polyhedral oligomeric silsesquioxane [(IC3H6)8Si8O12, OipPOSS] as an octafunctional initiator. The polymers with different topological structures were characterized by means of Fourier transform infrared spectroscopy and nuclear magnetic resonance spectroscopy. It is found that the star‐shaped poly(2‐methyl‐2‐oxazoline) was miscible with poly(vinylidene fluoride) (PVDF), which was evidenced by single glass‐transition temperature behavior and the equilibrium melting‐point depression. Nonetheless, the blends of linear poly(2‐methyl‐2‐oxazoline) with PVDF were phase‐separated. The difference in miscibility was ascribed to the topological effect of PMOx macromolecules on the miscibility. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 942–952, 2006  相似文献   

10.
4μ‐A2B2 star‐shaped copolymers contained polystyrene (PS), poly(isoprene) (PI), poly(ethylene oxide) (PEO) or poly(ε‐caprolactone) (PCL) arms were synthesized by a combination of Glaser coupling with living anionic polymerization (LAP) and ring‐opening polymerization (ROP). Firstly, the functionalized PS or PI with an alkyne group and a protected hydroxyl group at the same end were synthesized by LAP and then modified by propargyl bromide. Subsequently, the macro‐initiator PS or PI with two active hydroxyl groups at the junction point were synthesized by Glaser coupling in the presence of pyridine/CuBr/N,N,N ′,N ″,N ″‐penta‐methyl diethylenetri‐amine (PMDETA) system and followed by hydrolysis of protected hydroxyl groups. Finally, the ROP of EO and ε‐CL monomers was carried out using diphenylmethyl potassium (DPMK) and tin(II)‐bis(2‐ethylhexanoate) (Sn(Oct)2) as catalyst for target star‐shaped copolymers, respectively. These copolymers and their intermediates were well characterized by SEC, 1H NMR, MALDI‐TOF mass spectra and FT‐IR in details. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

11.
A polystyrene‐block‐oligo(2‐tert‐butylbutadiene)‐block‐polystyrene triblock copolymer was prepared and cyclized by end‐to‐end ring closure. Ring‐shaped polystyrene‐block‐oligo(2‐tert‐butylbutadiene) was isolated from the coupling product via gel permeation chromatography (GPC) fractionation. The ring polymer was ozonized for decomposition of the oligo(2‐tert‐butylbutadiene) sequences selectively referring to the linear molecule. From GPC analysis of the decomposed products by ozonolysis, it was quantitatively confirmed that the fractionated product was 86% ring molecules. Single chain dimensions of the ring and linear molecules in a good solvent, benzene, and in a θ solvent, cyclohexane, were measured with small‐angle neutron scattering. The ratios of the radii of gyration, Rg(ring)/Rg(linear), were 0.780 in benzene and 0.789 in cyclohexane. These were compared with theoretically predicted values. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1582–1589, 2002  相似文献   

12.
Here, we report on the synthesis and different crystallization behavior of linear‐ and star‐ PCL's containing a photocleavable linker (5‐hydroxy‐2‐nitro benzaldehyde), modulated by photochemical switching. Basis is the attachment of a photocleavable moiety close to the star‐core of a three‐arm star poly(caprolactone), so that the crystallization behavior can be controlled via a photochemical stimulus. The polymerization of ε‐caprolactone using a trivalent photocleavable initiator and stannous octanoate catalyst resulted in the synthesis of different molecular weights of star‐shaped photocleavable polymers. Various techniques like 1H NMR and ESI‐TOF‐MS confirmed the successful synthesis of the star‐shaped polymers. Complete photocleavage is ensured via GPC, HPLC, and ESI‐TOF‐MS. DSC studies clearly indicated the enhancement in crystallinity after photocleavage of the star‐shaped poly(ε‐caprolactone)s. Hence, for the first time phototriggered crystallization behavior of PCL polymers is reported, where the confinement exerted by the star architecture is removed by photoirradiation. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 642–649  相似文献   

13.
The synthesis of hybrid star‐shaped polymers was carried out by atom transfer radical polymerization of n‐butyl acrylate from a well‐defined multifunctional titanium‐oxo‐cluster initiator. Conditions were identified to prevent possible side reactions among monomer, polymer, and the titanium‐oxo‐cluster ligands. Polymerizations provided linear first‐order kinetics and the evolution of the experimental molecular weight is also linear with the conversion. 1H DOSY NMR and cleavage of the polymeric branches from the multifunctional initiator by hydrolysis were used to (i) prove the star‐shaped structure of the polymer, and (ii) demonstrate that the shoulder observed on size exclusion chromatograms is not due to a noncontrolled polymerization but to ungrafting of polymeric branches during analysis. Rheological properties of the hybrid star‐shaped poly(n‐butyl acrylate) were studied in the linear regime and show that the Ti‐oxo‐cluster not only increases significantly the viscosity of the polymer relative to its ungrafted arm but has a rheological signature which is qualitatively different from that of stars with organic cores suggesting that the Ti cluster reduces significantly the molecular mobility of the star. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

14.
Hyperbranched poly(2‐ethyl‐2‐oxazoline) was synthesized by a combination of cationic ring‐opening polymerization and the oxidation of thiol to disulfide groups. A three‐arm star poly(2‐ethyl‐2‐oxazoline) (PEtOx) was first synthesized using 1,3,5‐tris(bromomethyl) benzene as an initiator. The star PEtOx was end‐capped with potassium ethyl xanthate. Similarly, a linear PEtOx was synthesized and end‐capped with potassium ethyl xanthate using benzyl bromide as an initiator. Hyperbranched PEtOx was then obtained by in situ cleaving and subsequent oxidation of the star PEtOx and linear PEtOx mixture with n‐butylamine as both a cleaving agent and a base in tetrahydrofuran. The linear PEtOx was used to prevent the formation of gel. The hyperbranched PEtOx can be cleaved with dithiothreitol to trithiol and monothiol polymer. The hyperbranched PEtOx shows no remaining thiols using Ellman's assay. The resulting hyperbranched PEtOx was hydrolyzed to a novel hyperbranched polyethyleneimine with degradable disulfide linkages. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 2030–2037  相似文献   

15.
Poly(N‐vinylcaprolactam) (PNVCL) star‐shaped polymers with four arms and carboxyl end groups were synthesized by reversible addition–fragmentation chain transfer (RAFT) polymerization of N‐vinylcaprolactam (NVCL) employing a tetrafunctional trithiocarbonate as an R‐RAFT agent. The resulting star polymers were characterized using 1H NMR, FT‐IR, gel permeation chromatography (GPC), and UV–vis. Molecular weight of star polymers were analyzed by GPC and UV–vis being observed that the values obtained were very similar. Furthermore, the thermosensitive behavior of the star polymers was studied in aqueous solution by measuring the lower critical solution temperature by dynamic light scattering. Star‐shaped PNVCL were chain extended with ethyl‐hexyl acrylate (EHA) to yield star PNVCL‐b‐PEHA copolymers with an EHA molar content between 4% and 6% proving the living character of the star‐shaped macroCTA. These star block copolymers form aggregates in aqueous solutions with a hydrodynamic diameter ranged from 170 to 225 nm. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2156–2165  相似文献   

16.
Well‐defined star polymers consisting of tri‐, tetra‐, or octa‐arms have been prepared via coupling‐onto strategy using photoinduced copper(I)‐catalyzed 1,3‐dipolar cycloaddition click reaction. An azide end‐functionalized polystyrene and poly(methyl methacrylate), and an alkyne end‐functionalized poly(ε‐caprolactone) as the integrating arms of the star polymers are prepared by the combination of controlled polymerization and nucleophilic substitution reactions; whereas, multifunctional cores containing either azide or alkyne functionalities were synthesized in quantitatively via etherification and ring‐opening reactions. By using photoinduced copper‐catalyzed azide–alkyne cycloaddition (CuAAC) click reaction, reactive linear polymers are simply attached onto multifunctional cores to form corresponding star polymers via coupling‐onto methodology. The chromatographic, spectroscopic, and thermal analyses have clearly demonstrated that successful star formations can be obtained via photoinduced CuAAC click reaction. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1687–1695  相似文献   

17.
The ring‐opening polymerization (ROP) of cyclic esters, such as ε‐caprolactone, 1,5‐dioxepan‐2‐one, and racemic lactide using the combination of 3‐phenyl‐1‐propanol as the initiator and triflimide (HNTf2) as the catalyst at room temperature with the [monomer]0/[initiator]0 ratio of 50/1 was investigated. The polymerizations homogeneously proceeded to afford poly(ε‐caprolactone) (PCL), poly(1,5‐dioxepan‐2‐one) (PDXO), and polylactide (PLA) with controlled molecular weights and narrow polydispersity indices. The molecular weight determined from an 1H NMR analysis (PCL, Mn,NMR = 5380; PDXO, Mn,NMR = 5820; PLA, Mn,NMR = 6490) showed good agreement with the calculated values. The 1H NMR and matrix‐assisted laser desorption ionization time‐of‐flight mass spectrometry analyses strongly indicated that the obtained compounds were the desired polyesters. The kinetic measurements confirmed the controlled/living nature for the HNTf2‐catalyzed ROP of cyclic esters. A series of functional alcohols, such as propargyl alcohol, 6‐azido‐1‐hexanol, N‐(2‐hydroxyethyl)maleimide, 5‐hexen‐1‐ol, and 2‐hydroxyethyl methacrylate, successfully produced end‐functionalized polyesters. In addition, poly(ethylene glycol)‐block‐polyester, poly(δ‐valerolactone)‐block‐poly(ε‐caprolactone), and poly(ε‐caprolactone)‐block‐polylactide were synthesized using the HNTf2‐catalyzed ROP. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2455–2463  相似文献   

18.
The α,ω‐end‐capped poly(2‐methyl‐2‐oxazoline) (Cn‐POXZ‐Cn) have been synthesized by a one‐pot process using cationic ring‐opening polymerization with an appropriate initiator and terminating agent. The polymers bearing different alkyl groups C12 and C18 have molecular weight in the range of 2.4 × 103 to 14 × 103 with a small polydispersity index. The solution behavior of the free chains has been analyzed in a nonselective solvent, dichloromethane, by small‐angle neutron scattering and dynamic light scattering. These amphiphilic polymers associate in water to form flower‐like micellar structures. Critical micelle concentrations, investigated by fluorescence technique, are in the range of 0.03–0.5 g L?1 and are dependent on the hydrophilic/lipophilic balance. The structural properties of the aggregates have also been investigated by viscometry. Intrinsic viscosities of these polymers are in the same range as that of the precursors poly(2‐methyl‐2‐oxazoline) (POXZ) and mono‐functionalized polymers. Large viscosity increase corresponding to intermicellar bridging was observed in the vicinity of the micelle overlap concentration. Addition of hydroxypropyl β‐cyclodextrin (HβCD) has dissociated the aggregates and the intrinsic viscosities of the HβCD‐end‐capped chains have become comparable with the ones of POXZ precursor chains. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2477–2485, 2010  相似文献   

19.
A simple and facile strategy for the functionalization of commercial poly(ε‐caprolactone) diols (PCLs) with pendant functionalities at the polymer chain termini is described. Well‐defined allyl‐functionalized PCLs with varying numbers of allyl end‐block side‐groups were synthesized by cationic ring‐opening polymerization of allyl glycidyl ether using PCL diols as macroinitiators. Further functionalization of the allyl‐functionalized PCLs was realized via the UV‐initiated radical addition of a furan‐functionalized thiol to the pendant allyl functional groups, showing the suitability for post‐modification of the PCL materials. Changes in polymer structure as a result of varying the number of pendant functional units at the PCL chain termini were demonstrated. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 928–939  相似文献   

20.
A novel star‐shaped poly(p‐dioxanone) was synthesized by the ring‐opening polymerization of p‐dioxanone initiated by pentaerythritol with stannous octoate as a catalyst in bulk. The effect of the molar ratio of the monomer to the initiator on the polymerization was studied. The polymers were characterized with 1H NMR and 13C NMR spectroscopy. The thermal properties of the polymers were investigated with differential scanning calorimetry and thermogravimetric analysis. The novel star‐shaped poly(p‐dioxanone) has a potential use in biomedical materials. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1245–1251, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号