首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poly(propylene‐ran‐1,3‐butadiene) was synthesized using isospecific zirconocene catalysts and converted to telechelic isotactic polypropylene by metathesis degradation with ethylene. The copolymers obtained with isospecific C2‐symmetric zirconocene catalysts activated with modified methylaluminoxane (MMAO) had 1,4‐inserted butadiene units ( 1,4‐BD ) and 1,2‐inserted units ( 1,2‐BD ) in the isotactic polypropylene chain. The selectivity of butadiene towards 1,4‐BD incorporation was high up to 95% using rac‐dimethylsilylbis(1‐indenyl)zirconium dichloride (Cat‐A)/MMAO. The molar ratio of propylene to butadiene in the feed regulated the number‐average molecular weight (Mn) and the butadiene contents of the polymer produced. Metathesis degradations of the copolymer with ethylene were conducted with a WCI6/SnMe4/propyl acetate catalyst system. The 1H NMR spectra before and after the degradation indicated that the polymers degraded by ethylene had vinyl groups at both chain ends in high selectivity. The analysis of the chain scission products clarified the chain end structures of the poly(propylene‐ran‐1,3‐butadiene). © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5731–5740, 2007  相似文献   

2.
Diethylbis(2,2′‐bipyridine)Fe/MAO is an extremely active catalyst for the polymerization of 1,3‐dienes. Polymers with a 1,2 or 3,4 structure are formed from butadiene, isoprene, (E)‐1,3‐pentadiene and 3‐methyl‐1,3‐pentadiene, while cis‐1,4 polymers are derived from 2,3‐dimethyl‐1,3‐butadiene. The 1,2 (3,4) polymers obtained at 25°C are amorphous, while those obtained below 0°C are crystalline, as was determined by means of X‐ray diffraction. Mechanistic implications of the results are briefly discussed.  相似文献   

3.
Copolymerization of butadiene and isoprene catalyzed by the catalyst system V(acac)_3-Al(i-Bu)_2Cl-Al_2Et_3Cl_3 has been studied. Composition, microstructure, crystallinity and melting point of the copolymer obtained were determined by PGC, IR, X-ray diffraction and DSC methods respectively. The results revealed that the product was a copolymer and not a blend. The butadiene units presented in the copolymer were of trans-1,4-configuration, while the isoprene units were of both trans-1,4-and 3,4-forms. The melting point and crystallinity of the copolymer decrcascd with increase of molar ratio of isoprene to hutadiene.  相似文献   

4.
Copolymerization of ethene and 1,3‐butadiene was conducted over SiO2‐supported CpTiCl3 catalyst using Ph3CB(C6F5)4 or B(C6F5)3 combined with triisobutylaluminium (iBu3Al) or trioctylaluminium (Oct3Al). When the copolymerization was carried out at 0°C, the Ph3CB(C6F5)4/iBu3Al and B(C6F5)3/Oct3Al systems selectively produced copolymers which contained about 0.5–2.5 mol‐% of trans‐1,4‐inserted butadiene units. The number‐average molecular weight (Mn) of the copolymers was around 80 000 with polydispersities in the range from 6 to 8. Oxidative degradation of the vinylene units with potassium permanganate decreased the Mn values to several thousands with polydispersities of ca. 2. This indicates that the butadiene units are randomly distributed in the copolymers. NMR analysis clarified that the decomposed product is a polyethene with carboxyl groups at both chain ends.  相似文献   

5.
Summary: Copolymerizations of propene and buta‐1,3‐diene performed in the presence of rac‐[CH2(3‐tert‐butyl‐1‐indenyl)2]ZrCl2 and methylaluminoxane (MAO) have been investigated. Buta‐1,3‐diene gives prevailingly primary coordination to the metal, producing overall 1,2 units. Cyclopropane and cyclopentane rings, although in low amounts, are also obtained. The presence of butadiene would be responsible for some regioirregular 2,1‐inserted propene units, which at high temperatures give rearrangement to 3,1 units.

  相似文献   


6.
The content of styrene units in nonhydrogenated and hydrogenated styrene‐butadiene‐styrene and styrene‐isoprene‐styrene triblock copolymers significantly influences product performance. A size exclusion chromatography method was developed to determine the average styrene content of triblock copolymers blended with tackifier in adhesives. A complete separation of the triblock copolymer from the other additives was realized with size exclusion chromatography. The peak area ratio of the UV and refraction index signals of the copolymers at the same effective elution volume was correlated to the average styrene unit content using nuclear magnetic resonance spectroscopy with commercial copolymers as standards. The obtained calibration curves showed good linearity for both the hydrogenated and nonhydrogenated styrene‐butadiene‐styrene and styrene‐isoprene‐styrene triblock copolymers (r  = 0.974 for styrene contents of 19.3–46.3% for nonhydrogenated ones and r  = 0.970 for the styrene contents of 23–58.2% for hydrogenated ones). For copolymer blends, the developed method provided more accurate average styrene unit contents than nuclear magnetic resonance spectroscopy provided. These results were validated using two known copolymer blends consisting of either styrene‐isoprene‐styrene or hydrogenated styrene‐butadiene‐styrene and a hydrocarbon tackifying resin as well as an unknown adhesive with styrene‐butadiene‐styrene and an aromatic tackifying resin. The methodology can be readily applied to styrene‐containing polymers in blends such as poly(acrylonitrile‐butadiene styrene).  相似文献   

7.
Copolymers of 2‐methylene‐1,3‐dioxepane (MDO) and methyl acrylate (MA) containing ester units both in the backbone and as pendant groups were synthesized by free‐radical copolymerization. The influence of reaction conditions such as the polymerization time, temperature, initiator concentration, and comonomer feed ratio on the yield, molecular weight, and copolymer composition was investigated. The structure of the copolymers was confirmed by 1H NMR, 13C NMR, and IR spectroscopy. Differential scanning calorimetry indicated that the copolymers had a random structure. An NMR study showed that hydrogen transfer occurred during the copolymerization. The reactivity ratios of the comonomers were rMDO = 0.0235 and rMA = 26.535. The enzymatic degradation of the copolymers obtained was carried out in the presence of proteinase K or a crude enzyme extracted from earthworms. The experimental results showed that the higher ester molar percentage in the backbone caused a faster degradation rate. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2898–2904, 2003  相似文献   

8.
A novel copolymer, poly(N‐hexyl‐3,7‐phenothiazylene‐1,2‐ethenylene‐2,6‐pyridylene‐1,2‐ethenylene) ( P3 ), containing N‐hexyl‐3,7‐phenothiazylene and 2,6‐pyridylene chromophores was synthesized to investigate the effect of protonation, metal complexation, and chemical oxidation on its absorption and photoluminescence (PL). Poly(N‐hexyl‐3,8‐iminodibenzyl‐1,2‐ethenylene‐1,3‐phenylene‐1,2‐ethenylene) and poly(N‐hexyl‐3,7‐phenothiazylene‐1,2‐ethenylene‐1,3‐phenylene‐1,2‐ethenylene) ( P2 ), consisting of 1,3‐divinylbenzene alternated with N‐hexyl‐3,8‐iminodibenzyl and N‐hexyl‐3,7‐phenothiazylene, respectively, were also prepared for comparison. Electrochemical investigations revealed that P3 exhibited lower band gaps (2.34 eV) due to alternating donor and acceptor conjugated units (push–pull structure). The absorption and PL spectral variations of P3 were easily manipulated by protonation, metal chelation, and chemical oxidation. P3 displayed significant bathochromic shifts when protonated with trifluoroacetic acid in chloroform. The complexation of P3 with Fe3+ led to a significant absorption change and fluorescence quenching, and this implied the coordination of ferric ions with the 2,6‐pyridylene groups in the backbone. Moreover, both phenothiazylene‐containing P2 and P3 showed conspicuous PL quenching with a slight redshift when oxidized with NOBF4. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1272–1284, 2004  相似文献   

9.
Stereoblock polybutadiene (PBD) composed of amorphous equibinary cis?1,4/1,2 PBD (e‐PBD, soft) and crystalline syndiotactic 1,2‐PBD (s‐1,2‐PBD, hard) segments is synthesized through one‐pot sequential polymerization with iron(III)2‐ethylhexanoate/triisobutylaluminum/diethyl phosphate [Fe(2‐EHA)3/Al(i‐Bu)3/DEP] catalyst system. The first‐stage polymerization of 1,3‐butadiene (BD) is carried out at a low [Al]/[Fe] ratio to give amorphous e‐PBD block, and sequentially, the in situ addition of excessive Al(i‐Bu)3 and BD to the living polymerization system give rise to a second crystalline s‐1,2‐PBD block. The length of each block is controllable by adjusting cocatalyst and monomer feed ratio. The syndiotactic pentad content is in the range of 63.8–76.6% and increases with the length of s‐1,2‐PBD block. The copolymer exhibits glass transition temperature (Tg) around ?40 °C and melting point (Tm) around 168 °C originating from e‐PBD and s‐1,2‐PBD blocks, respectively. The incompatibility between s‐1,2‐PBD and e‐PBD blocks as well as the crystallization of s‐1,2‐PBD block induce the microphase separation in stereoblock PBD. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1182–1188  相似文献   

10.
A stereospecific synthesis of (2S)3‐(2,4,5‐trifluorophenyl)propane‐1,2‐diol from D ‐mannitol has been developed. The reaction of 2,3‐O‐isopropylidene‐D ‐glyceraldehyde with 2,4,5‐trifluorophenylmagnesium bromide gave [(4R)‐2,2‐dimethyl‐1,3‐dioxolan‐4‐yl](2,4,5‐trifluorophenyl)methanol in 65% yield as a mixture of diastereoisomers (1 : 1). The Ph3P catalyzed reaction of the latter with C2Cl6 followed by reduction with Pd/C‐catalyzed hydrogenation gave (2S)‐3‐(2,4,5‐trifluorophenyl)propane‐1,2‐diol with >99% ee and 65% yield.  相似文献   

11.
A series of pyrazole‐substituted [hydrotris(1H‐pyrazolato‐κN1)borato(1−)]iridium complexes of the general composition [Ir(Tpx)(olefin)2] (Tpx=TpPh and TpTh) and their capability to activate C−H bonds is presented. As a test reaction, the double C−H activation of cyclic‐ether substrates leading to the corresponding Fischer carbene complexes was chosen. Under the reaction conditions employed, the parent compound [Ir(TpPh)(ethene)2] was not isolable; instead, (OC‐6‐25)‐[Ir(TpPhκCPh,κ3N,N′,N″)(ethyl)(η2‐ethene)] ( 1 ) was formed diastereoselectively. Upon further heating, 1 could be converted exclusively to (OC‐6‐24)‐[Ir(TpPhκ2CPh,CPh,κ3N,N′,N″)(η2‐ethene)] ( 2 ). Complex 1 , but not 2 , reacted with THF to give (OC‐6‐35)‐[Ir(TpPhκ3N,N′,N″)H(dihydrofuran‐2(3H)‐ylidene)] ( 3 ), a cyclic Fischer carbene formed by double C−H activation of THF. Accordingly, complexes of the general formula [Ir(Tpx)(butadiene)] (see 4 – 6 ; butadiene=buta‐1,3‐diene, 2‐methylbuta‐1,3‐diene (isoprene), 2,3‐dimethylbuta‐1,3‐diene) reacted with THF to yield 3 or the related derivative 9 . The reaction rate was strongly dependent on the steric demand of the butadiene ligand and the nature of the substituent at the 3‐position of the pyrazole rings.  相似文献   

12.
Styrene–butadiene rubber (SBR) is a copolymer of styrene and butadiene, and the butadiene unit is composed of cis‐1,4‐, trans‐1,4‐, and 1,2‐components. Filler‐polymer interactions of each component of SBR in silica‐filled SBR compounds were examined by microstructure analysis of the bound and unbound rubbers. The composition ratio of butadiene and styrene units (butadiene/styrene) of the bound rubber was higher than that of the compounded rubber. Of the butadiene units, the 1,2‐component of the bound rubber was more abundant than the cis‐1,4‐ and trans‐1,4‐components. The filler‐polymer interaction of the butadiene unit with silica was stronger than that of the styrene unit, and the interaction of the 1,2‐component was stronger as compared with the others. The butadiene–styrene ratio of the bound rubber of the compounds containing the silane coupling agent was lower than for the compounds without the silane. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 577–584, 2004  相似文献   

13.
The copolymerization of ethylene with cyclopentene catalyzed by three α‐diimine nickel(II) complexes in the presence of methylaluminoxane (MAO) was investigated. High‐molecular‐weight branched ethylene/cyclopentene copolymers with only cis‐1,3‐enchained cyclopentene units, which has not been reported previously, were obtained. The catalytic activity, cyclopentene incorporation, copolymer molecular weight, and molecular‐weight distribution could be controlled over a wide range through the variation of the catalyst structure and polymerization conditions, including cyclopentene concentration in the feed and polymerization temperature. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2186–2192, 2008  相似文献   

14.
The stereoregularity of polydienes is almost the same in regard to the individual elements of the lanthanide series, whereas the activity of the Ln catalysts in diene polymerization varies from one to the other within the series. The latter may be attributed to the difference in the number of electrons that occupy the 4f orbitals. It has been proved that the polymerization of dienes with Ln catalysts under certain conditions proceeds by a “living polymer” mechanism. With regard to the polymerization of butadiene, the most active catalyst is a Nd3+species a new binary system of NdCl3-3ROH + AlR3 has been discovered. The cis- 1,4 content in polybutadiene is about 97% and the 1,2 content, less than 1%. For the polymerization of isoprene with a Nd3+ catalyst system, the effects of ligand and alkyl groups in AIR3 on cis-1,4 content (ca. 95%) in polyisoprene can be neglected. For the copolymerization of butadiene and isoprene, the cis-1,4 contents of these two monomeric units in the copolymer are greater than 95% the reactivity ratios r1 and r2 are determined. and the Tg's of the copolymers of various compositions deviate slightly from the calculated values for random copolymers. A linear relationship exists between the yield strength from the stress-strain curve of Ln-polvbutadiene and its [n] This relationship is verified by Ln-polyisoprene and natural rubber but different slopes are obtained  相似文献   

15.
Carbon black-supported sulfuric acid or BF3·Et2O-initiated polymerizations of 2-methylene-4,4,5,5-tetramethyl-1,3-dioxolane (1), 2-methylene-4-phenyl-1,3-dioxolane (2), and 2-methylene-4-isopropyl-5,5-dimethyl-1,3-dioxane (3) were performed. 1,2-Vinyl addition homopolymers of 1–3 were produced using carbon black-supported H2SO4 initiation at temperatures from 0°C to 60°C whereas both ring-opened and 1,2-vinyl structural units were present in the polymers using BF3·Et2O as an initiator. Cationic polymerizations of 2-methylene-1,3-dithiolane (4) and copolymerization of 4 with 2-methylene-4-(t-butyl)-1,3-dioxolane (5) were initiated with either carbon black-sulfuric acid or BF3·Et2O. Insoluble 1,2-vinyl addition homopolymers of 4 were obtained upon initiation with the supported acid or BF3·Et2O. A soluble copolymer of 2-methylene-1,3-dithiolane (4) and 4-(t-butyl)-2-methylene-1,3-dioxolane (5) was obtained upon BF3·Et2O initiation. This copolymer is composed of three structural units: a ring-opened dithioester unit, a 1,2-vinyl-polymerized 1,3-dithiolane unit, and a 1,2-vinyl polymerized 4-(t-butyl)-1,3-dioxolane unit. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2823–2840, 1999  相似文献   

16.
C2‐symmetric zirconocenes activated by methylaluminoxane were utilized as catalysts in the polymerization of 1,3‐diolefins. The results indicate that the most crowded catalytic precursor rac[CH2(3‐tert‐butyl‐1‐indenyl)2]ZrCl2 ( 1 ) is also the most active one, giving 1,4‐polymerization of 1,3‐butadiene and (Z)‐1,3‐pentadiene and 1,2‐polymerization of (E)‐1,3‐pentadiene and 4‐methyl‐1,3‐pentadiene. Probably, the different behavior of 1 with respect to other C2‐symmetric zirconocenes utilized is due to the different stability of the bond between the last inserted monomer unit and the metal, as well as to the coordination of incoming monomer.  相似文献   

17.
Olefin-diene copolymerizations in the presence of C2 symmetric zirconocene rac-[CH2(3-tert-butyl-1-indenyl)2]ZrCl2/MAO catalytic system have been reported and rationalized by experimental and molecular modeling studies. Ethene gives 1,2-cyclopropane and 1,2-cyclopentane, 1,3-cyclobutane, and 1,3-cyclopentane units in copolymerization with 1,3-butadiene, 1,4-pentadiene, and 1,5-hexadiene, respectively. Propene-1,3-butadiene copolymerizations lead to 1,2 and 1,4 butadiene units and to a low amount of 1,2-cyclopropane units.  相似文献   

18.
The copolymerization of styrene and 1,3‐butadiene (Bd) or isoprene (Ip) was carried out with half‐sandwich titanium(IV) Cp′TiCl3 catalysts (where Cp′ is cyclopentadienyl 1 , indenyl 2 , or pentamethylcyclopentadienyl 3 ) with methylaluminoxane as a cocatalyst. For the copolymerization with Bd, catalyst 3 gave the copolymers containing the highest amount of Bd among the catalysts used. The resulting copolymers were composed of a styrene–Bd multiblock sequence. High melting points were observed in the copolymers prepared with catalyst 1 . The structures of hydrogenated poly(styrene‐co‐Bd) were studied by 13C NMR spectroscopy, and the long styrene sequence length was detected in the copolymers prepared with catalyst 1 . For styrene/Ip copolymerization, random copolymers were obtained. Among the used catalysts, catalyst 1 gave the copolymers containing the highest amount of Ip. The copolymers prepared with catalyst 1 showed a steep melting point depression with increasing Ip content because of the high ratio of 1,4‐inserted Ip units and/or the low molecular weights of the copolymers. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 939–946, 2003  相似文献   

19.
The polymerization of isobutylene with VCl4 in n-heptane or in the bulk does not proceed in the dark at temperatures lower than -20°C, yet it may be induced by the addition of styrene, α-methylstyrene, p-divinylbenzene, 1,3-butadiene, isoprene, and 2,3-dimethyl-1,3-butadiene. In these cases the polymerizations proceed with variously long induction periods depending on the type of comonomer used. The shortest induction period was observed after the addition of p-divinylbenzene and 2, 3-dimethyl-1, 3-butadiene. In a nonpolar medium the copolymerization of isobutylene with isoprene or butadiene in the dark gives rise to copolymers insoluble in heptane, benzene, and CCl4, while co-polymers formed with the effect of light are soluble. Unlike polymerizations carried out in a nonpolar solution, the polymerization of isobutylene with VCl4 in methyl chloride proceeds spontaneously in the absence of protonic coinitiators. Also, soluble copolymers of isobutylene with isoprene or butadiene arise in the copolymerization in methylchloride solution irrespective of the procedure used when the copolymerization is carried out (in the dark or with the effect of light). Polymerizations and copolymerizations carried out both in nonpolar and in polar solutions are inhibited by the presence of oxygen.  相似文献   

20.
The quasi‐living copolymerization of ethylene with propylene was achieved by using N‐heterocyclic carbene (NHC) ligated vanadium complex ( V3 , VOCl3[1,3‐(2,6‐iPr2C6H3)2(NCH?)2C:]) due to the stabilization of active center by the introduction of bulky and electron rich NHC ligand with bulky isopropyl substituents at the ortho positions of the phenyl rings. The weight‐average molecular weight (Mw) of the resulting copolymer increases linearly with its weight in 20 min. The ultra‐high‐molecular‐weight (UHMW) ethylene‐propylene copolymer (Mw = 1612 kg mol?1) can be synthesized with V3 /Et3Al2Cl3 catalytic system. The novel complex V4′ (VCl3[1,3‐(2,4,6‐Me3C6H2)2(NCH?)2C:]·2THF) was constructed by the introduction of two coordinated tetrahydrofuran molecules and decrease in steric hindrance at the ortho positions of phenyl rings. The UHMW ethylene‐propylene copolymer (Mw = 1167 kg mol?1) can also be synthesized by using V4′ /Et3Al2Cl3 catalytic system. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 553–561  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号