共查询到20条相似文献,搜索用时 15 毫秒
1.
Hank De Bruyn Ewan Sprong Marianne Gaborieau Ghislain David John A. Roper Robert G. Gilbert 《Journal of polymer science. Part A, Polymer chemistry》2006,44(20):5832-5845
A method is presented for synthesizing surfactant‐free latexes comprising a starch‐graft‐vinyl polymer, (1) starting with a suspension of the highly branched starch amylopectin, either native or degraded, (2) then using ozonolysis to create free‐radical initiation sites on this amylopectin scaffold, and (3) finally adding the monomer and inducing polymerization. The ozone simultaneously thins the starch and creates initiating/grafting sites on the starch, from which starch‐graft‐copolymer latexes can be grown. The encapsulation of starch inside the hydrophobic polymer particles created by a heterogeneous free‐radical polymerization process is demonstrated with energy‐dispersive spectroscopy; this is the first time that the particle morphology of such a latex has been so characterized. The data unambiguously prove that low‐molar‐mass degraded starch can be encapsulated within a latex particle. The underlying mechanisms have been explored, and data quantifying the rates of production of hydroperoxides by ozone, the thermal decomposition of the starch hydroperoxides so formed, and the degradation of amylopectin by ozone are reported. The activation energy for the thermal decomposition of the starch macroinitiator, determined in this work to be 125 ± 8 kJ mol−1, is consistent with the proposition that the initiating species are mainly hydroperoxides. Colloidally stable poly(styrene‐co‐n‐butyl acrylate) latexes based on high‐molar‐mass amylopectin have been developed. These are stable against electrolytes (several months in 4 mol L−1 NaCl), with 20% of the starch effectively grafted to the particles. Films cast from such latexes are more pliable than starch films and are readily redispersed in water. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5832–5845, 2006 相似文献
2.
Hank De Bruyn Ewan Sprong Marianne Gaborieau John A. Roper III Robert G. Gilbert 《Journal of polymer science. Part A, Polymer chemistry》2007,45(18):4185-4192
A method is presented for synthesizing surfactant‐free latexes comprising starch‐graft‐(vinyl polymer) starting with a suspension of amylopectin, either native or modified, then using cerium(IV) with either potassium persulfate or glucose to create grafting sites on the starch. Latex particles comprising polystyrene, poly(styrene‐co‐(n‐butyl acrylate)) and poly(vinyl acetate) grafted onto high molecular weight amylopectin were developed, with up to 80% of the starch effectively grafted to the particles. These latexes were colloidally stable against electrolyte (several months in 4 M NaCl). Reaction rates of Ce4+ with simple sugars and polysaccharides were investigated, as well as the gelation mechanism of the latex. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4185–4192, 2007 相似文献
3.
The use of emulsion polymerization to prepare core–shell rubber (CSR) toughening particles with different shell thickness-to-core diameter ratios is described. The conditions leading to controlled particle size and morphology are discussed. The particle shell is crosslinked during the synthesis so that its integrity and morphology are maintained upon curing of the epoxy network. The mixing of the CSR particles with the reactive epoxy and the processing of toughened-epoxy networks are described. The characteristics of each phase and the mechanical properties of the materials are reported. The fracture parameters (Klc, Glc) are discussed in relation to the structure of the CSR-particles. 相似文献
4.
Cakmakli B Hazer B Tekin IO Kizgut S Koksal M Menceloglu Y 《Macromolecular bioscience》2004,4(7):649-655
Syntheses of wholly natural polymeric linseed oil (PLO) containing peroxide groups have been reported. Peroxidation, epoxidation and/or perepoxidation reactions of linseed oil, either under air or under oxygen flow at room temperature, resulted in polymeric peroxides, PLO-air and PLO-ofl, containing 1.3 and 3.5 wt.-% of peroxide, with molecular weights of 2 100 and 3 780 Da, respectively. PLO-air contained cross-linked film up to 46.1 wt.-% after a reaction time of 60 d, associated with a waxy, soluble part (PLO-air-s) that was isolated with chloroform extraction. PLO-ofl was obtained as a waxy, viscous liquid without any cross-linked part at the end of 24 d under visible irradiation and oxygen flow. Polymeric peroxides, PLO-air-s and PLO-ofl initiated the free radical polymerization of both methyl methacrylate (MMA) and styrene (S) to give PMMA-graft-PLO and PS-graft-PLO graft copolymers in high yields with Mw varying from 37 to 470 kDa. The polymers obtained were characterized by FT-IR, (1)H NMR, TGA, DSC and GPC techniques. Cross-linked polymers were also studied by means of swelling measurements. PMMA-graft-PLO graft copolymer film samples were also used in cell-culture studies. Fibroblast cells were well adhered and proliferated on the copolymer film surfaces, which is important in tissue engineering. 相似文献
5.
6.
F. J. Hua B. Liu C. P. Hu Y. L. Yang 《Journal of polymer science. Part A, Polymer chemistry》2002,40(11):1876-1884
Novel multigraft copolymers of poly(methyl methacrylate‐graft‐polystyrene) (PMMA‐g‐PS) in which the number of graft PS side chains was varied were prepared by a subsequent two‐step living radical copolymerization approach. A polymerizable 4‐vinylbezenyl 2,2,6,6‐tetramethyl‐1‐piperidinyloxy (TEMPO) monomer (STEMPO), which functioned as both a monomer and a radical trapper, was placed in a low‐temperature atom transfer radical polymerization (60°C) process of methyl methacrylate with ethyl 2‐bromopronionate (EPNBr) as an initiator to gain ethyl pronionate‐capped prepolymers with TEMPO moieties, PMMA‐STEMPOs. The number of TEMPO moieties grafted on the PMMA backbone could be designed by varying STEMPO/EPNBr, for example, the ratios of 1/2, 2/3, or 3/4 gained one, two, or three graft TEMPO moieties, respectively. The resulting prepolymers either as a macromolecular initiator or a trapper copolymerized with styrene in the control of stable free‐radical polymerization at an elevated temperature (120 °C), producing the corresponding multigraft copolymers, PMMA‐g‐PSs. The nitroxyl‐functionalized PMMA prepolymers produced a relatively high initiation efficiency (>0.8) as a result of the stereohindrance and slow diffusion of TEMPO moieties connected on the long PMMA backbone. The polymerization kinetics in two processes showed a living radical polymerization characteristic. The molecular structures of these prepolymers and graft copolymers were well characterized by combining Fourier transform infrared spectroscopy, gel permeation chromatography, chemical element analysis, and 1H NMR. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1876–1884, 2002 相似文献
7.
Haitao Zhang Zhenrong Guo Junlian Huang 《Journal of polymer science. Part A, Polymer chemistry》2002,40(24):4398-4403
A copolymer [P(MMA‐co‐TBPM)] was prepared by the radical polymerization of methyl methacrylate (MMA) and 2,2,6,6‐tetramethyl‐4‐benzyloxyl‐piperidinyl methacrylate (TBPM) with azobisisobutyronitrile as an initiator. TBPM was a new monomer containing an activated ester. Both the copolymer and TBPM were characterized with NMR, IR, and gel permeation chromatography in detail. It was confirmed that P(MMA‐co‐TBPM) could initiate the graft polymerization of styrene by the cleavage of the activated ester of the TBPM segment. This process was controllable, and the molecular weight of the graft chain of polystyrene increased with the increment of conversion. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4398–4403, 2002 相似文献
8.
The grafting of the methyl methacrylate (MMA) monomer onto natural rubber (NR) was carried out by supercritical carbon dioxide (scCO2) swelling polymerization with benzoyl peroxide (BPO) as an initiator. Fourier transform–infrared spectroscopy (FT–IR) was used to confirm the formation of graft copolymers with the characteristic bands of symmetric C?O and C? O? C stretching vibrations at 1728 cm?1 and 1147 cm?1, respectively. The effects of the rubber‐to‐monomer ratio, amount of initiator, reaction time, and pressure on the monomer grafting level (GL) and grafting efficiency (GE) were investigated, and the optimum conditions for the preparation of NR‐g‐MMA were found to be 70:30 of the rubber‐to‐monomer ratio, 1.2% of the initiator content, and the reaction pressure of 23 MPa for 6 h. The thermal behavior of the NR and the different NR/MMA molar ratio grafted copolymer samples was studied by differential scanning calorimetry (DSC). The observed glass transition temperature (Tg) was consistent with the GL. The tensile strength, modulus of elasticity, elongation at break, hardness, and oil resistance of graft copolymers were determined and compared with the values of NR and that of polymerization products prepared in traditional toluene solution. The results showed that the tensile strength, modulus of elasticity, hardness and oil resistance were greatly improved after modification in scCO2. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
9.
Ali irpan Selmiye Alkan Levent Toppare Yeim Hepuzer Yusuf Yaci 《Journal of polymer science. Part A, Polymer chemistry》2002,40(23):4131-4140
A thiophene‐functionalized methacrylate monomer (3‐methylthienyl methacrylate) was synthesized via the esterification of 3‐thiophene methanol with methacryloyl chloride. The methacrylate monomer was polymerized by free‐radical polymerization in the presence of azobisisobutyronitrile as the initiator. Graft copolymers of poly(3‐methylthienyl methacrylate) (PMTM2) and polypyrrole and of PMTM2 and polythiophene were synthesized by constant‐potential electrolyses. p‐Toluene sulfonic acid, sodium dodecyl sulfate, and tetrabutylammonium tetrafluoroborate were used as the supporting electrolytes. PMTM2‐coated platinum electrodes were used as anodes in the polymerization of pyrrole and thiophene. Moreover, the oxidative polymerization of poly(3‐methylthienyl methacrylate) (PMTM1) was studied with FeCl3 as the oxidant. The self‐polymerization of PMTM1 was also investigated by galvanostatic electrolysis both in dichloromethane and in propylene carbonate. The structures of PMTM1 and PMTM2 were investigated by several spectroscopic and thermal methods. The grafting process was elucidated with conductivity measurements, Fourier transform infrared spectroscopy, differential scanning calorimetry, thermogravimetric analysis, and scanning electron microscopy studies. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4131–4140, 2002 相似文献
10.
Tomoaki Matsugi Shin‐Ichi Kojoh Nobuo Kawahara Shingo Matsuo Hideyuki Kaneko Norio Kashiwa 《Journal of polymer science. Part A, Polymer chemistry》2003,41(24):3965-3973
Polyethylene‐block‐poly(methyl methacrylate) (PE‐b‐PMMA) was successfully synthesized through the combination of metallocene catalysis with living radical polymerization. Terminally hydroxylated polyethylene, prepared by ethylene/allyl alcohol copolymerization with a specific zirconium metallocene/methylaluminoxane/triethylaluminum catalyst system, was treated with 2‐bromoisobutyryl bromide to produce terminally esterified polyethylene (PE‐Br). With the resulting PE‐Br as an initiator for transition‐metal‐mediated living radical polymerization, methyl methacrylate polymerization was subsequently performed with CuBr or RuCl2(PPh3)3 as a catalyst. Then, PE‐b‐PMMA block copolymers of different poly(methyl methacrylate) (PMMA) contents were prepared. Transmission electron microscopy of the obtained block copolymers revealed unique morphological features that depended on the content of the PMMA segment. The block copolymer possessing 75 wt % PMMA contained 50–100‐nm spherical polyethylene lamellae uniformly dispersed in the PMMA matrix. Moreover, the PE‐b‐PMMA block copolymers effectively compatibilized homopolyethylene and homo‐PMMA at a nanometer level. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3965–3973, 2003 相似文献
11.
Emmanuel Logakis Christos Pandis Vasilios Peoglos Polycarpos Pissis Charalampos Stergiou Jürgen Pionteck Petra Pötschke Matej Mičušík Mária Omastová 《Journal of Polymer Science.Polymer Physics》2009,47(8):764-774
Polyamide 6 (PA6)/multi‐walled carbon nanotubes (MWCNT) nanocomposites were produced by diluting a masterbach containing 20 wt % nanotubes using melt mixing. The influence of the addition of well dispersed MWCNT (as indicated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM)) on the thermal transitions, and crystallization behavior of the PA6 matrix is investigated. Differential scanning calorimetry (DSC) results show a reduction in heat capacity jump at the glass transition which is interpreted by an immobilized interfacial layer near the nanotubes. Furthermore, both DSC and X‐ray diffraction (XRD) measurements indicate that nanotubes favor the formation of the α crystalline form of PA6. These findings are correlated with the observed improvement of the storage modulus as revealed by dynamic mechanical thermal analysis (DMTA). Additionally, a new crystallization peak appears when MWCNT are added, and is attributed to the formation of a different morphology of the same type crystallite around the nanotubes walls (trans‐crystallinity). Finally, water sorption measurements show an increase of water content, normalized to the amorphous polymer fraction, in the nanocomposites. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 764–774, 2009 相似文献
12.
《Journal of Polymer Science.Polymer Physics》2018,56(8):673-688
This article investigates shape memory polymers (SMPs) fabricated by swelling sulfur crosslinked natural rubber with four different molten fatty acids: lauric, myristic, palmitic, and stearic acid. As inexpensive additives, they allow commodity natural rubber to be directly converted to SMPs. The shape memory properties are investigated as a function of wt% fatty acid, the choice of fatty acid, and the applied load during shape memory programming. It is found that increasing the wt% acid improves the shape fixity up to ca. 97% at ≥50 wt% fatty acid, at which point the recovery starts to decline with increasing wt% acid due to network failure during shape programming. The shape fixity is found to depend on the yield stress and modulus of the fatty acid network, which both increase with increasing wt% acid. The choice of fatty acid also varies the trigger temperature for shape memory, which scales with the melting point of the fatty acid. Serendipitously, it is found that alignment of the fatty acid crystals during programming produces stiffer networks whose modulus increase with applied load, which counterbalances the higher elastic energy stored in the rubber network to produce lower sensitivity of the shape fixity to the applied load. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 673–687 相似文献
13.
Pei‐Hong Ni Qi‐Sheng Pan Liu‐Sheng Zha Chang‐Chun Wang Abdelhamid Elaïssari Shou‐Kuan Fu 《Journal of polymer science. Part A, Polymer chemistry》2002,40(4):624-631
A novel, near‐monodisperse, well‐defined ABA triblock copolymer, poly[2‐(dimethylamino)ethyl methacrylate]‐b‐poly(propylene oxide)‐b‐poly[2‐(dimethylamino)ethyl methacrylate], was synthesized via oxyanion‐initiated polymerization. The initiator was a telechelic‐type potassium alcoholate prepared from poly(propylene glycol) and KH in dry tetrahydrofuran. The copolymers produced were characterized by Fourier transform infrared, 1H NMR, and gel permeation chromatography (GPC). GPC and 1H NMR analyses showed that the products obtained were the desired copolymers, with narrow molecular weight distributions (ca. 1.09–1.11) very close to that of the original poly(propylene glycol). 1H NMR, surface tension measurements, and dynamic light scattering all indicated that the triblock copolymer led to interesting aqueous solution behaviors, including temperature‐induced micellization and very high surface activity. © 2002 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 624–631, 2002; DOI 10.1002/pola.10144 相似文献
14.
Hormoz Eslami Shiping Zhu 《Journal of polymer science. Part A, Polymer chemistry》2006,44(6):1914-1925
The emulsion atom transfer radical block copolymerization of 2‐ethylhexyl methacrylate (EHMA) and methyl methacrylate (MMA) was carried out with the bifunctional initiator 1,4‐butylene glycol di(2‐bromoisobutyrate). The system was mediated by copper bromide/4,4′‐dinonyl‐2,2′‐bipyridyl and stabilized by polyoxyethylene sorbitan monooleate. The effects of the initiator concentration and temperature profile on the polymerization kinetics and latex stability were systematically examined. Both EHMA homopolymerization and successive copolymerization with MMA proceeded in a living manner and gave good control over the polymer molecular weights. The polymer molecular weights increased linearly with the monomer conversion with polydispersities lower than 1.2. A low‐temperature prepolymerization step was found to be helpful in stabilizing the latex systems, whereas further polymerization at an elevated temperature ensured high conversion rates. The EHMA polymers were effective as macroinitiators for initiating the block polymerization of MMA. Triblock poly(methyl methacrylate–2‐ethylhexyl methacrylate–methyl methacrylate) samples with various block lengths were synthesized. The MMA and EHMA reactivity ratios determined by a nonlinear least‐square method were ~0.903 and ~0.930, respectively, at 70 °C. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1914–1925, 2006 相似文献
15.
Jun Wu Huxi Li Mitchell A. Winnik Rajeev Farwaha Jude Rademacher 《Journal of polymer science. Part A, Polymer chemistry》2004,42(19):5005-5020
We describe the synthesis and characterization of a series of poly(vinyl acetate‐co‐dibutyl maleate) [P(VAc‐DBM)] latex particles (monomer molar ratio 10.6:1). One set of samples [high‐M and M250k SDS‐P(VAc‐DBM), gel content 50% and 0%] was prepared in the presence of an anionic surfactant sodium dodecyl sulfate. The other two sets of samples [high‐M and M250k PVOH–P(VAc‐DBM)] were prepared in the presence of poly(vinyl alcohol) (PVOH). These polymers differ in gel content (50 and 0%) and the extent of PVOH grafting (30 and 15%). Polymer diffusion across cell boundaries in the latex films was monitored by fluorescence resonant energy transfer (ET) experiments. First, we examined M250k samples in the presence of grafted and post‐added PVOH. The presence of post‐added PVOH (5%) causes a small but detectable retardation on the rate of polymer diffusion, whereas the presence of grafted PVOH (degree of grafting: 15%) significantly promotes the polymer diffusion rate. For the high‐M P(VAc‐DBM), the presence of post‐added PVOH also retards the polymer diffusion. Strikingly, the presence of grafted PVOH (degree of grafting: 30%) in the high‐M PVOH‐P(VAc‐DBM) promotes the polymer diffusion to such an extent that the diffusion was complete in the freshly prepared films. Our data also suggest that under our experimental conditions, the rate of P(VAc‐DBM) diffusion increases with an increase of the degree of PVOH grafting. To confirm these results, we carried out fluorescence microscopy experiments to monitor the fate of PVOH in these latex films and found that in newly formed PVOH–P(VAc‐DBM) films, the PVOH was either uniformly distributed in the P(VAc‐DBM) matrix or the domains were too small to be resolved (i.e., < 0.5 μm). © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5005–5020, 2004 相似文献
16.
Synthesis of high temperature polyimide foams with pore sizes in the nanometer range was developed. Foams were prepared by casting graft copolymers comprising a thermally stable block as the matrix and a thermally labile material as the dispersed phase. The copolyimides as the matrix material were prepared via polycondensation reactions of pyromellitic dianhydride with three new diamines (4BAP, 3BAP, and BAN) through the poly(amic acid) precursors. Functionalized poly(propylene glycol) (PPGBr‐1000 and PPGBr‐2500) as the labile oligomer was prepared via reaction of poly(propylene glycol) monobutyl ether with 2‐bromoacetyl bromide. Graft copolymers were prepared by the reaction of the poly(amic acid)s with these thermally labile constituents. Upon thermal treatment the labile blocks were subsequently removed leaving pores with the size and shape of the original copolymer morphology. The polyimides and foamed polyimides were characterized by some conventional methods including FTIR, H‐NMR, DSC, TGA, SEM, TEM, and dielectric constant. The average pore size of the polyimide nanofoams was in the range of 5–20 nm. The structure–property relationships of the prepared nanofoams were investigated based on the diamine structures and also molecular weights of labile groups. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
17.
Mehmet Mürit Temüz Mehmet Cokun 《Journal of polymer science. Part A, Polymer chemistry》2005,43(17):3771-3777
18.
N. A. A. Rossi R. G. Jones S. J. Holder 《Journal of polymer science. Part A, Polymer chemistry》2003,41(1):30-40
ABA block copolymers of methyl methacrylate and methylphenylsilane were synthesized with a methodology based on atom transfer radical polymerization (ATRP). The reaction of samples of α,ω‐dihalopoly(methylphenylsilane) with 2‐hydroxyethyl‐2‐methyl‐2‐bromoproprionate gave suitable macroinitiators for the ATRP of methyl methacrylate. The latter procedure was carried out at 95 °C in a xylene solution with CuBr and 2,2‐bipyridine as the initiating system. The rate of the polymerization was first‐order with respect to monomer conversion. The block copolymers were characterized with 1H NMR and 13C NMR spectroscopy and size exclusion chromatography, and differential scanning calorimetry was used to obtain preliminary evidence of phase separation in the copolymer products. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 30–40, 2003 相似文献
19.
Jian‐Zhuang Chen Qiao‐Ling Zhao Hui‐Chao Lu Jin Huang Shao‐Kui Cao Zhi Ma 《Journal of polymer science. Part A, Polymer chemistry》2010,48(9):1894-1900
The design and synthesis of well‐defined polymethylene‐b‐polystyrene (PM‐b‐PS, Mn = 1.3 × 104–3.0 × 104 g/mol; Mw/Mn (GPC) = 1.08–1.18) diblock copolymers by the combination of living polymerization of ylides and atom transfer radical polymerization (ATRP) was successfully achieved. The 1H NMR spectrum and GPC traces of PM‐b‐PS indicated the successful extension of PS segment on the PM macroinitiator. The micellization behavior of such diblock copolymers in tetrahydrofuran were characterized by dynamic light scattering (DLS) and atomic force microscopy (AFM) techniques. The average aggregate sizes of PM‐b‐PS diblock copolymers with the same length of PM segment in tetrahydrofuran solution (1.0 mg mL?1) increases from 104.2 nm to 167.7 nm when the molecular weight of PS segment increases. The spherical precipitated aggregates of PM‐b‐PS diblock copolymers with an average diameter of 600 nm were observed by AFM. Honeycomb porous films with the average diameter of 3.0 μm and 6.0 μm, respectively, were successfully fabricated using the solution of PM‐b‐PS diblock copolymers in carbon disulfide via the breath‐figure (BF) method under a static humid condition. The cross‐sections of low density polyethylene (LDPE)/polystyrene (PS)/PM‐b‐PS and LDPE/polycarbonate (PC)/PM‐b‐PS blends were observed by scanning electron microscope and reveal that the PM‐b‐PS diblock copolymers are effective compatilizers for LDPE/PS and LDPE/PC blends. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1894–1900, 2010 相似文献
20.
Zachariah Oommen G. Groeninckx Sabu Thomas 《Journal of Polymer Science.Polymer Physics》2000,38(4):525-536
The dynamic mechanical and thermal properties of natural rubber/poly (methyl methacrylate) blends (NR/PMMA) with and without the addition of graft copolymer (NR‐g‐PMMA) have been investigated. Dynamic mechanical spectroscopy is used to examine the effect of compatibilizer loading on storage modulus (E′), loss modulus (E″) and loss tangent (tan δ) at different temperatures and at different frequencies. The morphology of the blends indicates that the size of the dispersed phase decreased by the addition of a few percent of the graft copolymer followed by a leveling off at higher concentrations. This is an indication of interfacial saturation. Attempts have been made to correlate morphology with dynamic mechanical properties. Various models have been used to fit the experimental viscoelastic results. Differential scanning calorimetry has been used to analyze the glass‐transition temperatures of the blends. The thermal stability of the blends has been analyzed by thermogravimetry. Compatibilized blends are found to be more thermally stable than uncompatibilized blends. Finally the miscibility and mechanical properties of the blends annealed above Tg are evaluated. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 525–536, 2000 相似文献