首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The feasibility of utilizing stable free‐radical polymerization (SFRP) in the synthesis of well‐defined poly(2‐vinylnaphthalene) homopolymers has been investigated. Efforts to control molecular weight by manipulating initiator concentration while maintaining a 2,2,6,6‐tetramethylpiperidinyl‐1‐oxy (TEMPO):benzoyl peroxide (BPO) molar ratio of 1.2:1 proved unsuccessful. In addition, systematic variations of the TEMPO: BPO molar ratio did not result in narrow molecular weight distributions. In situ Fourier transform infrared spectroscopy (FTIR) indicated that the rate of monomer disappearance under SFRP and thermal conditions were identical. This observation indicated a lack of control in the presence of the stable free radical, TEMPO. The similarities in chemical structure between styrene and 2‐vinylnaphthalene suggested thermally initiated polymerization occurred via the Mayo mechanism. A kinetic analysis of the thermal polymerization of styrene and 2‐vinylnaphthalene suggested that the additional fused ring in 2‐vinylnaphthalene increased the propensity for thermal polymerization. The observed rate constant for thermal polymerization of 2‐vinylnaphthalene was determined using in situ FTIR spectroscopy and was one order of magnitude greater than styrene, assuming pseudo‐first‐order kinetics. Also, an Arrhenius analysis indicated that the activation energy for the thermal polymerization of 2‐vinylnaphthalene was 30 kJ/mol less than styrene. © 2002 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 583–590, 2002; DOI 10.1002/pola.10131  相似文献   

2.
Malononitrile (MN), trifluoroacetic acid anhydride, acetylacetone, acetoacetic ester, and diethyl malonate have been identified as novel rate‐accelerating additives for nitroxide‐mediated living free‐radical polymerization. Among these additives, MN has the greatest accelerating effect. Adding MN at an MN/2,2,6,6‐tetramethylpiperidine‐oxyl (TEMPO) molar ratio of 4.0 results in a nearly 20 times higher rate of polymerization of styrene (St), and adding MN at an MN/TEMPO molar ratio of 2.5 results in a nearly 15 times higher rate of copolymerization of St and methyl methacrylate. The polymerization of St proceeds in a living fashion, as indicated by the increase in the molecular weight with time and conversion and the relatively low polydispersity. The polymerization rate of St is so quick that the conversion reaches 70% within 1 h at 125 °C when the molar ratio of MN to TEMPO is 4:1. Moreover, the reaction temperature can be reduced to 110 °C. A possible explanation for this effect is that the formation of hydrogen bonds between the MN and TEMPO moiety weakens the C? ON bond at the end of the polymer chain. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5246–5256, 2005  相似文献   

3.
Research into nitroxide‐mediated radical polymerization (NMRP) performed in emulsions and miniemulsions has progressed significantly over the past several years. However, our knowledge of the conditions during polymerization (e.g., the nitroxide concentrations in the aqueous and organic phases) is incomplete, and as such we have yet to achieve a clear understanding of the mechanisms involved in these processes. To better understand the conditions present in heterogeneous NMRP, we measured the partition coefficients of 2,2,6,6‐tetramethylpiperidinyl‐1‐oxy (TEMPO), 4‐hydroxy‐TEMPO, and 4‐amino‐TEMPO between styrene and water from 25 to 135 °C. Experiments were performed in a 250‐mL Parr reactor that was equipped for the simultaneous sampling of the aqueous and organic phases. Aqueous‐phase and organic‐phase nitroxide concentrations were measured with ultraviolet–visible spectrophotometry. Experiments were also performed at 135 °C in the presence of hexadecane (costabilizer), polystyrene, and sodium dodecylbenzenesulfonate (surfactant) to determine the effects of the miniemulsion polymerization recipe ingredients on the partitioning of TEMPO and 4‐hydroxy‐TEMPO. On the basis of the measured partition coefficients (expressed as the ratio of the nitroxide concentration in the organic phase to the nitroxide concentration in the aqueous phase), 4‐hydroxy‐TEMPO was the most hydrophilic of the nitroxides investigated, followed by 4‐amino‐TEMPO and TEMPO. Hexadecane, polystyrene, and sodium dodecylbenzenesulfonate did not have a significant influence on the partitioning of these nitroxides at 135 °C. Experiments with ethylbenzene instead of styrene demonstrated that thermally generated radicals were not responsible for the observed temperature effects on the measured partition coefficients. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1081–1089, 2001  相似文献   

4.
The TEMPO‐mediated polymerization of styrene in the presence of camphorsulfonic acid (CSA) is carried out using controlled radical dispersion polymerization. In the absence of TEMPO and CSA, 92% of conversion was achieved within 3 h of polymerization. When TEMPO is solely used, broadening of particle size with narrow PDI was observed because of the prolonged polymerization time. However, when 1:1 molar ratio of CSA/TEMPO was added, the fairly monodisperse PS microspheres having 5.83 μm average size and 3.42% CV (coefficient of variation) were successfully achieved because of the narrow molecular weight of intermediate oligomers and shortening of the polymerization time. This result obviously indicates that the addition of CSA in TEMPO‐mediated dispersion polymerization not only shortens the polymerization time but also greatly improves the uniformity of the microspheres. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 62–68, 2006  相似文献   

5.
2,2,6,6‐Tetramethyl‐4‐[d‐(+)‐10‐camphorsulfonyl]‐1‐piperidinyloxy was synthesized and used as a chiral nitroxide for the bulk polymerizations of styrene initiated with benzoyl peroxide (BPO), tetraethylthiuram disulfide (TETD), and thermal initiation. The results showed that the polymerizations proceeded in a controlled/living way; that is, the kinetics presented approximately first‐order plots, and the number‐average molecular weights of the polymers with narrow molecular weight distributions (weight‐average molecular weight/number‐average molecular weight) increased with the monomer conversion linearly. The molecular weight distributions in the case of thermal initiation were narrower than those in the case of BPO and TETD, whereas the polymerization rate with BPO or TETD as an initiator was obviously faster than that with thermal initiation. In addition, successful chain‐extension reactions were carried out, and the structures of the obtained polymers were characterized by gel permeation chromatography and 1H NMR. The specific rotations of the polymers were also measured by polarimetric analysis. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1522–1528, 2006  相似文献   

6.
The stable free radical polymerization (SFRP) of styrene, initiated with benzoyl peroxide in the presence of TEMPO, under bulk conditions, is demonstrated to proceed rapidly without the need for any rate enhancing additives such as camphorsulfonic acid, 2‐fluoro‐1‐methyl pyridinium p‐toluenesulfonate, or acetic anhydride. Monomer conversions as high as 70% can be achieved in 5 h or less while maintaining polydispersity indexes of 1.15. These results stand in stark contrast to earlier reactions that required 70 h to achieve similar conversions. This study demonstrates that the single largest factor governing the rates of polymerization is the molar concentration of excess TEMPO remaining in solution after initiation. A reduction in the TEMPO to BPO ratio is required when large amounts of BPO are used to target low molecular weight polystyrenes. However, when a lower molar amount of BPO is used to obtain high molecular weight polystyrenes, a higher TEMPO to BPO ratio is required. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5487–5493, 2007  相似文献   

7.
The 2,2,6,6‐tetramethyl‐1‐piperidinyloxy (TEMPO)‐mediated stable free radical polymerization of styrene in miniemulsion at 100 °C is demonstrated. Although this temperature is 20–35 °C lower than typical temperatures used for TEMPO‐mediated polymerizations, reasonable reaction rates were achieved by the addition of ascorbic acid or a free radical initiator. More importantly, the living character of the chains was preserved; the degree of polymer “livingness” was comparable to polymerizations conducted at 135 °C. Polydispersities were broader than that observed in well‐controlled systems, ranging from ~1.4–1.6, and consistent with expectations for systems having a low activation rate. The results are significant for two reasons. They will facilitate TEMPO‐mediated minemulsion polymerizations in nonpressurized (or minimally pressurized) reactors, and they reveal the potential to expand the traditional temperature range of TEMPO and possibly other nitroxides in bulk, solution, and miniemulsion. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 232–242, 2006  相似文献   

8.
In studying 2,2,6,6‐tetramethy‐1‐piperidinyloxy (TEMPO)‐mediated styrene miniemulsions, we have observed that the surfactant sodium dodecylbenzenesulfonate (SDBS) not only provides colloidal stability but also influences the rate of polymerization. Increasing the SDBS concentration results in higher polymerization rates, although the molecular weight distribution and particle size distribution are not significantly impacted. We have also examined another common sulfonate surfactant, DOWFAX 8390. In contrast to SDBS, DOWFAX 8390 does not affect the polymerization rate. Furthermore, DOWFAX‐stabilized polymerizations are slower than SDBS‐stabilized polymerizations. TEMPO‐mediated bulk styrene polymerizations are also accelerated significantly in the presence of SDBS. Although the mechanism for the rate acceleration is unknown, the experimental evidence suggests that SDBS is participating in the generation of radicals capable of propagating, thereby reducing the TEMPO concentration within the particles. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5974–5986, 2006  相似文献   

9.
Bimolecular termination in nitroxide‐mediated radical polymerization in miniemulsion has been investigated through the heating of a polystyrene–2,2,6,6‐tetramethylpiperidinyl‐1‐oxy macroinitiator and its 4‐hydroxy‐2,2,6,6‐tetramethylpiperidinyl‐1‐oxy analogue in an aqueous toluene dispersion with sodium dodecyl benzenesulfonate as a surfactant at 125 °C. The level of bimolecular termination by combination, evaluated from the high‐molecular‐weight shoulder, was higher in miniemulsion than in solution and increased with decreasing particle size. Quantitative analysis revealed that these results cannot be rationalized solely by nitroxide partitioning to the aqueous phase. The results are explained by an interface effect, by which nitroxide is adsorbed or located at the aqueous–organic interface. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4995–5004, 2007  相似文献   

10.
In TEMPO (2,2,6,6,‐tetramethyl‐1‐piperidinyloxy) controlled styrene radical polymerizations, the thermal self‐initiation reaction of styrene monomer is one of the main sources for the deviations from ideal living polymerization. However, it is also important because it continuously generates radicals to compensate for the loss of radicals caused by the termination reactions and thereby maintains a reasonable reaction rate. In this report, different initial TEMPO concentrations were used in styrene miniemulsion polymerizations without any added initiator. The consumption rate of TEMPO or radical generation rate was calculated from the length of the induction period and the increasing total number of polymer chains. It was found that there is little difference between the miniemulsions and the corresponding bulk systems in terms of the length of the induction period, which increases linearly with initial TEMPO concentration. After the induction period, the consumption rate of TEMPO or radical generation rate was reduced to a lower level, and a faster initial polymerization rate was found in the bulk system compared to the corresponding miniemulsion system. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4921–4932, 2004  相似文献   

11.

A fluorescence method was used for determination of marked chain ends in polystyrene samples prepared by 4‐substituted TEMPO type nitroxide‐mediated living free radical polymerization of styrene. 2,2,6,6‐Tetramethyl‐1‐(1‐phenylethoxy)‐piperidin‐4‐yl‐4‐pyren‐1‐ylbutanoate (PYNOR) was prepared and used as an unimolecular initiator bearing pyrene as a fluorescence mark on mediating nitroxide fragment. The bulk polymerization of styrene at 120°C, in the presence of new unimolecular initiator, was a typical nitroxide mediated living radical polymerization. For comparison, two different molar ratios of initiator and monomer (1∶400 and 1∶1000 initiator ‐ monomer [I:M]) were used for polymerization. When I:M=1∶400, the obtained polydispersity was 1.12 and maximum molecular weight 27,000 g/mol was obtained at 62% conversion. For ratio 1∶1000, slightly higher polydispersity was obtained ?1.26 and the molecular weight was 53,000 g/mol at 70% conversion. The content of the polystyrene chains bearing mediating nitroxide fragment was determined by fluorescence spectroscopy. The intensity of pyrene fluorescence decreased as the molar mass, and the conversion increased as well. The extent of the incorporation of chromophore at propagating chain end or “livingness” of polymerization decreased despite the fact that the polydispersity did not change. The extent of side reaction leading to broadening of polydispersity is suppressed due to the high viscosity of the system at higher conversion. A low extent of “livingness” will have a very negative effect on possible preparation of block copolymers.  相似文献   

12.
Styrene/maleic anhydride (MA) copolymerization was carried out using benzoyl peroxide (BPO) and 2,2,6,6‐tetramethyl‐1‐piperidinyloxy (TEMPO). Styrene/MA copolymerization proceeded faster and yielded higher molecular weight products compared to styrene homopolymerization. When styrene/MA copolymerization was approximated to follow the first‐order kinetics, the apparent activation energy appeared to be lower than that corresponding to styrene homopolymerization. Molecular weight of products from isothermal copolymerization of styrene/MA increased linearly with the conversion. However products from the copolymerization at different temperatures had molecular weight deviating from the linear relationship indicating that the copolymerization did not follow the perfect living polymerization characteristics. During the copolymerization, MA was preferentially consumed by styrene/MA random copolymerization and then polymerization of practically pure styrene continued to produce copolymers with styrene‐co‐MA block and styrene‐rich block. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2239–2244, 2000  相似文献   

13.
Summary: Simulations based on the kinetics and mechanism of nitroxide‐mediated free radical polymerization (NMP) have been carried out in order to understand the hitherto largely unexplained effects (or lack thereof) of nitroxide partitioning in aqueous miniemulsion NMP. The focus has been on the miniemulsion NMP of styrene mediated by TEMPO and 4‐hydroxy‐TEMPO, two nitroxides with very similar activation‐deactivation equilibria, but very different organic phase‐aqueous phase partition coefficients. The general conclusion is that the organic phase propagating radical and nitroxide concentrations are unaffected by the partition coefficient in the stationary state, but the rate of polymerization and the extent of bimolecular termination increase with increasing nitroxide water solubility in the pre‐stationary state region. Specific NMP systems are, therefore, affected differently by nitroxide partitioning depending on whether polymerization predominantly occurs in the stationary state or not, which in turn is governed mainly by the activation‐deactivation equilibrium constant and the rate of thermal initiation.

Simulated organic‐phase propagating radical concentrations in the presence of thermal initiation for TEMPO‐mediated miniemulsion free radical polymerization of styrene for different nitroxide partitioning coefficients at 125 °C.  相似文献   


14.
The photoinduced solution polymerization of 4‐methacryloyl‐1,2,2,6,6‐pentamethyl‐piperidinyl (MPMP), used as a reactive hindered amine piperidinol derivative, was performed. The obtained MPMP homopolymer had a very narrow molecular weight distribution (1.06–1.39) according to gel permeation chromatography. The number‐average and weight‐average molecular weights increased linearly with the monomer conversion, this being characteristic of controlled/living free‐radical polymerizations. Electron spin resonance signals were detected in the MPMP homopolymer and in a polymer mixture solution, and they were assigned to nitroxide radicals, which were bound to the polymer chains and persisted at a level of 10?9 mol/L during the polymerization. Instead of the addition of mediated nitroxide radicals such as 2,2,6,6‐tetramethyl‐piperidinyl‐1‐oxy (TEMPO), those radicals (>N? O ·) were formed in situ during the photopolymerization of MPMP, and so the reaction mechanism was understood as being similar to that of TEMPO‐mediated controlled/living free‐radical polymerization. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2659–2665, 2004  相似文献   

15.
Living free‐radical butyl acrylate polymerization in miniemulsion was initiated by polystyrene bearing a nitroxyl end group to yield polystyrene‐block‐poly(butyl acrylate) block copolymers. Polystyrene macroinitiator was obtained using different initiating systems (potassium persulfate or benzoyl peroxide) in the presence of 2,2,6,6‐tetramethylpiperidine‐N‐oxyl (TEMPO) or the more water‐soluble 4‐hydroxy‐2,2,6,6‐tetramethylpiperidin‐N‐oxyl (OH‐TEMPO). The nitroxide water‐solubility has an important influence in determining molecular weight distribution and controlling the growth of the second block.  相似文献   

16.
A bicomponent initiation system consisting of 2,2,6,6‐tetramethylpiperidine‐N‐oxyl (TEMPO) and the water soluble initiator potassium persulfate (KPS) was used to develop a robust and versatile semibatch emulsion polymerization process to obtain polystyrene (PS) latexes with solids contents of 5–40 wt %. A window of operating conditions was found that yielded high conversion (>95%) stable latexes and well controlled polymers, overcoming limitations found in previous attempts at developing similar processes using TEMPO. The critical parameters studied were surfactant concentration, monomer concentration in the nucleation step and the monomer feed rate in the semibatch step. Methyl acrylate (MA) was used in the nucleation step to improve the nitroxide efficiency (NEff). Latexes having molecular weight distribution (MWD) with dispersity (?) lower than 1.5, average particle size (Dp) from ≈32 to ≈500 nm, nitroxide efficiencies NEff up to ≈1.0 and monomer conversions >90% were obtained in less than 12 h with solids contents up to 40 wt %. These results constitute a significant advance over prior efforts in TEMPO‐mediated polymerization in aqueous dispersions. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 49–62  相似文献   

17.
In this article, we offer clear evidence for the radical copolymerizability of porphyrin rings in 2,2,6,6‐tetramethyl‐1‐piperidinyloxy (TEMPO)‐mediated radical copolymerizations with styrene. The radical copolymerizations of styrene with 5,10,15,20‐tetrakis(pentafluorophenyl)porphyrin (H2TFPP) was conducted using 1‐phenyl‐1‐(2,2,6,6‐tetramethyl‐1‐piperidinyloxy)ethane as an initiator. The refractive index (RI) traces for the size‐exclusion chromatography of the resulting copolymers were unimodal with narrow molecular weight distributions. The RI traces shifted toward higher molecular weight regions as the polymerization progressed, and the number‐average molecular weights were close to those calculated on the basis of the feed compositions and monomer conversions. These features were in good agreement with a TEMPO‐mediated mechanism. The traces recorded by the ultraviolet‐visible (UV‐vis) detector (430 nm) were identical to those obtained by the RI detector, indicating a statistical copolymerization of styrene with H2TFPP. This also indicated that H2TFPP acted as a monomer and not as a terminator or a chain‐transfer agent under the conditions used. A benzyl radical addition to H2TFPP was conducted as a model reaction for the copolymerization using tributyltin hydride as a chain‐transfer agent, affording a reduced porphyrin, 2‐benzyl‐5,10,15,20‐tetrakis(pentafluorophenyl)chlorin 1 , via radical addition to the β‐pyrrole position. The UV‐vis spectrum of 1 was fairly similar to that of poly(styrene‐co‐H2TFPP), indicating that H2TFPP polymerized at its β‐pyrrole position in the TEMPO‐mediated radical polymerization. TEMPO‐mediated radical copolymerizations of styrene with several porphyrin derivatives were also demonstrated. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

18.
The controlled free‐radical polymerization of styrene and chloromethylstyrene monomers in the presence of 2,2,6,6‐tetramethyl‐1‐piperidinyloxyl (TEMPO) has been studied with the aim of synthesizing block copolymers with well‐defined structures. First, TEMPO‐capped poly(chloromethylstyrene) was prepared. Among several initiating systems [self‐initiation, dicumyl peroxide, and 2,2′‐azobis(isobutyronitrile)], the last offered the best compromise for obtaining a good control of the polymerization and a fast polymerization rate. The rate of the TEMPO‐mediated polymerization of chloromethylstyrene was independent of the initial concentration of TEMPO but unexpectedly higher than the rate of the thermal self‐initiated polymerization of chloromethylstyrene. Transfer reactions to the chloromethyl groups were thought to play an important role in the polymerization kinetics and the polydispersity index of the resulting poly(chloromethylstyrene). Second, this first block was used as a macroinitiator in the polymerization of styrene to obtain the desired poly(chloromethylstyrene‐b‐styrene) block copolymer. The kinetic modeling of the block copolymerization was in good agreement with experimental data. The block copolymers obtained in this work exhibited a low polydispersity index (weight‐average molecular weight/number‐average molecular weight < 1.5) and could be chemically modified with nucleophilic substitution reactions on the benzylic site, opening the way to a great variety of architectures. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3845–3854, 2000  相似文献   

19.
Polymeric microspheres were prepared from a Merrifield resin via nitroxide‐mediated radical polymerization. Polystyrene, poly(acetoxystyrene), and poly[styrene‐b‐(methyl methacrylate‐co‐styrene)], poly(acetoxystyrene‐b‐styrene), and poly(styrene‐co‐2‐hydroxyethyl methacrylate) copolymers were demonstrated to graft onto 2,2,6,6‐tetramethyl‐1‐piperidinyloxy nitroxide bound Merrifield resins. The polymerization control was enhanced both on the surface and in solution by the addition of sacrificial nitroxide. The significant increase in the particle diameter (more than a fivefold volume increase for polystyrene brushes) showed that polymer growth was not only on the surface but also within the particles, and this diameter increase could be adjusted through changes in the molecular weight of the polymers. The microspheres were characterized by elemental analysis, IR spectroscopy, particle size analysis, and optical microscopy. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2145–2154, 2005  相似文献   

20.
The bulk polymerization of styrene was investigated with tetramethylthiuram disulfide (TMTD) as an initiator in the presence of 2,2,6,6‐tetramethyl‐1‐piperidinyloxy (TEMPO) at 123 °C. The polymerization proceeded in a controlled/living way; that is, the polymerization rate was first‐order with respect to the monomer concentration, and the molecular weight increased linearly with conversion. The molecular weights of the polymers obtained were close to the theoretical values, and the molecular weight distributions were relatively low (weight‐average molecular weight/number‐average molecular weight = 1.1–1.3). The rate of polymerization with TMTD as an initiator was faster than that with benzoyl peroxide, and the rate was independent of the initial concentration of TMTD in the presence of TEMPO. The obtained polystyrene was functionalized with ultraviolet‐light‐sensitive ? SC(S)N(CH3)2 groups, which was characterized with 1H NMR spectroscopy. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 543–551, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号