首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 380 毫秒
1.
The atom transfer radical polymerizations (ATRPs) of styrene initiated by a novel initiator, ethyl 2‐N,N‐(diethylamino)dithiocarbamoyl‐butyrate (EDDCB), in both bulk and solution were successfully carried out in the presence of copper(I) bromide (CuBr) and N,N,N′,N,N″‐pentamethyldiethylenetriamine at 115 °C. The polymerization rate was first‐order with respect to the monomer concentration, and the molecular weights of the obtained polymers increased linearly with the monomer conversions with very narrow molecular weight distributions (as low as 1.17) up to higher conversions in both bulk and solution. The polymerization rate was influenced by various solvents in different degrees in the order of cyclohexanone > dimethylformamide > toluene. The molecular weight distributions of the produced polymers in cyclohexanone were higher than those in dimethylformamide and toluene. The results of 1H NMR analysis and chain extension confirmed that well‐defined polystyrene bearing a photo‐labile N,N‐(diethylamino)dithiocarbamoyl group was obtained via ATRP of styrene with EDDCB as an initiator. The polymerization mechanism for this novel initiation system is a common ATRP process. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 32–41, 2006  相似文献   

2.
Electrochemically mediated atom transfer radical polymerizations (ATRPs) provide well‐defined polymers with designed dispersity as well as under external temporal and spatial control. In this study, 1‐cyano‐1‐methylethyl diethyldithiocarbamate, typically used as chain‐transfer agent (CTA) in reversible addition–fragmentation chain transfer (RAFT) polymerization, was electrochemically activated by the ATRP catalyst CuI/2,2′‐bipyridine (bpy) to control the polymerization of methyl methacrylate. Mechanistic study showed that this polymerization was mainly controlled by the ATRP equilibrium. The effect of applied potential, catalyst counterion, catalyst concentration, and targeted degree of polymerization were investigated. The chain‐end functionality was preserved as demonstrated by chain extension of poly(methyl methacrylate) with n‐butyl methacrylate and styrene. This electrochemical ATRP procedure confirms that RAFT CTAs can be activated by an electrochemical stimulus. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 376–381  相似文献   

3.
The properties of a ligand, including molecular structure and substituents, strongly affect the catalyst activity and control of the polymerization in atom transfer radical polymerization (ATRP). A new tetradentate ligand, N,N′‐bis(pyridin‐2‐ylmethyl‐3‐hexoxo‐3‐oxopropyl)ethane‐1,2‐diamine (BPED) was synthesized and examined as the ligand of copper halide for ATRP of styrene (St), methyl acrylate (MA), and methyl methacrylate (MMA), and compared with other analogous linear tetrdendate ligands. The BPED ligand was found to significantly promote the activation reaction: the CuBr/BPED complex reacted with the initiators so fast that a large amount of Cu(II)Br2/BPED was produced and thus the polymerizations were slow for all the monomers. The reaction of CuCl/BPED with the initiator was also fast, but by reducing the catalyst concentration or adding CuCl2, the activation reaction could be slowed to establish the equilibrium of ATRP for a well‐controlled living polymerization of MA. CuCl/BPED was found very active for the polymerization of MA. For example, 10 mol% of the catalyst relatively to the initiator was sufficient to mediate a living polymerization of MA. The CuCl/BPED, however, could not catalyze a living polymerization of MMA because the resulting CuCl2/BPED could not deactivate the growing radicals. The effects of the ligand structures on the catalysis of ATRP are also discussed. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3553–3562, 2004  相似文献   

4.
A concept based on diffusion‐regulated phase‐transfer catalysis (DRPTC) in an aqueous‐organic biphasic system with copper‐mediated initiators for continuous activator regeneration is successfully developed for atom transfer radical polymerization (ICAR ATRP) (termed DRPTC‐based ICAR ATRP here), using methyl methacrylate (MMA) as a model monomer, ethyl α‐bromophenylacetate (EBrPA) as an initiator, and tris(2‐pyridylmethyl)amine (TPMA) as a ligand. In this system, the monomer and initiating species in toluene (organic phase) and the catalyst complexes in water (aqueous phase) are simply mixed under stirring at room temperature. The trace catalyst complexes transfer into the organic phase via diffusion to trigger ICAR ATRP of MMA with ppm level catalyst content once the system is heated to the polymerization temperature (75 °C). It is found that well‐defined PMMA with controlled molecular weights and narrow molecular weight distributions can be obtained easily. Furthermore, the polymerization can be conducted in the presence of limited amounts of air without using tedious degassed procedures. After cooling to room temperature, the upper organic phase is decanted and the lower aqueous phase is reused for another 10 recycling turnovers with ultra low loss of catalyst and ligand loading. At the same time, all the recycled catalyst complexes retain nearly perfect catalytic activity and controllability, indicating a facile and economical strategy for catalyst removal and recycling.

  相似文献   


5.
The atom transfer radical polymerization (ATRP) of styrene onto poly(vinylidene fluoride)‐graft‐poly(vinylbenzyl chloride) (PVDF‐g‐PVBC) membranes was investigated. Novel membranes were designed for fuel‐cell applications. The benzyl chloride groups in the PVDF‐g‐PVBC membranes functioned as initiators, and a Cu‐based catalytic system with the general formula Cu(n)Xn/ligand [where X is Cl or Br and the ligand is 2,2′‐bipyridyl (bpy)] was employed for the ATRP. In addition, 10 vol % dimethylformamide was added for increased solubility of the catalyst complex in styrene. The system was homogeneous, except for the membrane, when the initiator/copper halide/ligand/monomer molar ratio was 1/1/3/500. As anticipated, the fastest polymerization rate of styrene was observed with the copper bromide/bpy‐based catalyst system. The reaction rate was strongly temperature‐dependent within the studied temperature interval of 100–130 °C. The degree of grafting increased linearly with time, thereby indicating first‐order kinetics, regardless of the polymerization temperature. Furthermore, 120 °C was the maximum polymerization temperature that could be used in practice because the membrane structure was destroyed at higher temperatures. The degree of styrene grafting reached 400% after 3 h at 120 °C. Such a high degree of grafting could not be reached with conventional uncontrolled radiation‐induced grafting methods because of termination reactions. On the basis of an Arrhenius plot, the activation energy for the homogeneous ATRP of styrene was 217 kJ/mol. The prepared membranes became proton‐conducting after sulfonation of the polystyrene grafts. The highest conductivity measured for the prepared membranes was 70 mS/cm, which is comparable to the values normally measured for commercial Nafion membranes. The scanning electron microscopy/energy‐dispersive X‐ray results showed that the membranes had to be grafted through the matrix with both PVBC and polystyrene to become proton‐conducting after sulfonation. In addition, PVDF‐g‐[PVBC‐g‐(styrene‐blocktert‐butyl acrylate)] membranes were also synthesized by ATRP. © 2002 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 591–600, 2002; DOI 10.1002/pola.10146  相似文献   

6.
The living radical polymerization of styrene in bulk was successfully performed with a tetraethylthiuram disulfide/copper bromide/2,2′‐bipyridine (bpy) initiating system. The initiator Et2NCS2Br and the catalyst cuprous bromide (CuBr) were produced from the reactants in the system through in situ atom transfer radical polymerization (ATRP). A plot of natural logarithm of the ratio of original monomer concentration to monomer concentration at present, ln([M]0/[M]) versus time gave a straight line, indicating that the kinetics was first‐order. The number‐average molecular weight from gel permeation chromatography (GPC) of obtained polystyrenes did not agree well with the calculated number‐average molecular weight but did correspond to a 0.5 initiator efficiency. The polydispersity index (i.e., the weight‐average molecular weight divided by the number‐average molecular weight) of obtained polymers was as low as 1.30. The resulting polystyrene with α‐diethyldithiocarbamate and ω‐Br end groups could initiate methyl methacrylate polymerization in the presence of CuBr/bpy or cuprous chloride/bpy complex catalyst through a conventional ATRP process. The block polymer was characterized with GPC, 1H NMR, and differential scanning calorimetry. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 4001–4008, 2001  相似文献   

7.
程振平  朱秀林 《高分子科学》2014,32(8):1010-1018
Atom transfer radical polymerization of styrene(St) and methyl methacrylate(MMA) in bulk and in different solvents using activators generated by electron transfer(AGET ATRP) were investigated in the presence of a limited amount of air using FeCl3·6H2O as the catalyst, ascorbic acid sodium salt(AsAc-Na) as the reducing agent, and a cheap and commercially available tetrabutylammonium bromide(TBABr) as the ligand. It was found that polymerization in THF resulted in shorter induction period than that in bulk and in toluene for AGET ATRP of St, while referring to AGET ATRP of MMA, polymerization in THF showed three advantages compared with that in bulk and toluene: 1) shortening the induction period, 2) enhancing the polymerization rate and 3) having better controllability. The living features of the obtained polymers were verified by chain end analysis and chain-extension experiments.  相似文献   

8.
The supplemental activator and reducing agent (SARA) atom transfer radical polymerization (ATRP) mediated by Na2S2O4 in the presence of air, without external deoxygenation or additional oxygen scavengers, is reported for several vinyl monomers: methyl acrylate (MA), n-butyl acrylate (n-BA), methyl methacrylate (MMA), 2-(dimethylamino)ethyl methacrylate (DMAEMA), poly(ethylene glycol) methyl ether acrylate (OEOA), and styrene (Sty). The polymerizations can be conducted in aqueous medium or using organic/water mixtures as solvent, with low concentration of copper, near room temperature. In the absence of any external deoxygenation, several well-defined homopolymers and block copolymers were obtained (Ð < 1.3). The evolution of the oxygen concentration during the polymerizations was monitored with an optical oxygen sensor. The consumption of oxygen prior polymerization in ethanol/water mixtures was attributed to the combined presence of Na2S2O4 and alkyl halide initiator, which led to a lower initiation efficiency (Ieff). This could be overcome by decreasing the headspace volume of the reaction. The system reported exhibited the potential to be scalable, which is very relevant from an industrial standpoint. © 2019 Wiley Periodicals, Inc. J. Polym. Sci. 2020 , 58, 145–153  相似文献   

9.
Cobalt(II) perfluorooctanoate‐catalyzed atom transfer radical polymerization (ATRP) and reverse ATRP were developed to prepare oligostyrenes (Mn < 2500) with low polydispersities Mw/Mn < 1.5. Fluorous biphase catalysis was applied for effective recycling of catalyst and fluorous solvent. The homogeneous polymerization reaction was performed at 90 °C in toluene/cyclohexane/perfluorodecalin mixture (1:1:1) and fluorine‐free solvents. Temperature‐induced phase separation of this fluorous solvent mixture occurred at room temperature and proved to be the key for the very effective separation of the cobalt(II) perfluorooctanoate from the oligostyrene and fluorine‐free solvents. Both the fluorine‐tagged cobalt catalysts and the fluorous media were recycled and reused up to three times without encountering catalyst activity losses. The roles of cobalt catalysts, fluorous media, and monomer/initiator ratio were examined with respect to the polymerization kinetics. Fluorine‐containing and fluorine‐free cobalt(II) octanoate catalyzed controlled styrene oligomerization according to the ATRP mechanism. The molar mass control range was limited in fluorous biphase catalysis most likely because of precipitation of high molar mass polystyrenes in the fluorous reaction medium. To the best of our knowledge, this is the first time temperature‐induced phase separation of fluorous and fluorine‐free solvents has been successfully applied to polymerization processing. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3804–3813, 2005  相似文献   

10.
With CuBr/tetramethylguanidino‐tris(2‐aminoethyl)amine (TMG3‐TREN) as the catalyst, the atom transfer radical polymerization (ATRP) of methyl methacrylate, n‐butyl acrylate, styrene, and acrylonitrile was conducted. The catalyst concentration of 0.5 equiv with respect to the initiator was enough to prepare well‐defined poly(methyl methacrylate) in bulk from methyl methacrylate monomer. For ATRP of n‐butyl acrylate, the catalyst behaved in a manner similar to that reported for CuBr/tris[2‐(dimethylamino)ethyl]amine. A minimum of 0.05 equiv of the catalyst with respect to the initiator was required to synthesize the homopolymer of the desired molecular weight and low polydispersity at the ambient temperature. In the case of styrene, ATRP with this catalyst occurred only when a 1:1 catalyst/initiator ratio was used in the presence of Cu(0) in ethylene carbonate. The polymerization of acrylonitrile with CuBr/TMG3‐TREN was conducted successfully with a catalyst concentration of 50% with respect to the initiator in ethylene carbonate. End‐group analysis for the determination of the high degree of functionality of the homopolymers synthesized by the new catalyst was determined by NMR spectroscopy. The isotactic parameter calculated for each system indicated that the homopolymers were predominantly syndiotactic, signifying that the tacticity remained the same, as already reported for ATRP. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5906–5922, 2005  相似文献   

11.
A simulation model has been developed to predict the partitioning behavior of styrene in dispersion polymerization in ethanol–water mixtures. The composition of both the continuous phase and the dispersed phase are quantitatively estimated throughout the polymerization process. The presence of water in the system causes a considerable increase of the styrene partitioning in favor of the particles. Thus, at 70°C and for an initial composition of ethanol/water/styrene = 63.3/26.9/9.8, the concentration of styrene in the particles is about 4.8 times higher than that in the serum instead of about one in pure ethanol. The higher the polymerization temperature, the lower the styrene concentration in the particles; the higher the initial styrene concentration, the higher the styrene concentration in the particles, whereas the partition coefficient is not largely effected. In contrast, neither the interfacial tension nor the final particle size do significantly alter the simulation results. The predicted data from this model have been successfully applied to clarify the mechanisms involved in dispersion polymerization, in terms of stabilization and of kinetic events. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36 : 325–335, 1998  相似文献   

12.
An asymmetric difunctional initiator 2‐phenyl‐2‐[(2,2,6,6 tetramethylpiperidino)oxy] ethyl 2‐bromo propanoate ( 1 ) was used for the synthesis of ABC‐type methyl methacrylate (MMA)‐tert‐butylacrylate (tBA)‐styrene (St) triblock copolymers via a combination of atom transfer radical polymerization (ATRP) and stable free‐radical polymerization (SFRP). The ATRP‐ATRP‐SFRP or SFRP‐ATRP‐ATRP route led to ABC‐type triblock copolymers with controlled molecular weight and moderate polydispersity (Mw/Mn < 1.35). The block copolymers were characterized by gel permeation chromatography and 1H NMR. The retaining chain‐end functionality and the applying halide exchange afforded high blocking efficiency as well as maintained control over entire routes. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2025–2032, 2002  相似文献   

13.
The kinetics of atom transfer radical polymerization (ATRP) of styrene using bis(1,10‐phenanthroline)copper bromide was investigated. The concentration of the copper catalyst does not affect the propagation rate but does affect the termination process of polymerization appreciably. With increasing reaction temperature the molecular weight distribution of the produced PS becomes more narrow. The apparent activation energy was found to be 75 kJ/mol.  相似文献   

14.
Densely grafting copolymers of ethyl cellulose with polystyrene and poly(methyl methacrylate) were synthesized through atom transfer radical polymerization (ATRP). First, the residual hydroxyl groups on the ethyl cellulose reacted with 2‐bromoisobutyrylbromide to yield 2‐bromoisobutyryloxy groups, known to be an efficient initiator for ATRP. Subsequently, the functional ethyl cellulose was used as a macroinitiator in the ATRP of methyl methacrylate and styrene in toluene in conjunction with CuBr/N,N,N′,N″,N″‐pentamethyldiethylenetriamine as a catalyst system. The molecular weight of the graft copolymers increased without any trace of the macroinitiator, and the polydispersity was narrow. The molecular weight of the side chains increased with the monomer conversion. A kinetic study indicated that the polymerization was first‐order. The morphology of the densely grafted copolymer in solution was characterized through laser light scattering. The individual densely grafted copolymer molecules were observed through atomic force microscopy, which confirmed the synthesis of the densely grafted copolymer. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4099–4108, 2005  相似文献   

15.
Modified cubic spherosilicate cages of the type [Si8O20]8? were used as rigid, inorganic cores for the synthesis of macroinitiators for thermal and photoinduced free radical and controlled radical polymerizations. Two different routes to these macroinitiators were investigated: the direct modification of the octaanion with chlorosilane‐functionalized initiators and the hydrosilation of SiH‐substituted cages. The latter synthesis of the macroinitiators resulted in more defined reaction products. With these compounds, the polymerizations of styrene and methyl methacrylate were carried out. The free radical polymerizations showed broad polydispersities based on coupling reactions, whereas the copper‐mediated atom transfer radical polymerizations (ATRP) revealed that good polymerization control could be achieved with the prepared initiators. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3858–3872, 2002  相似文献   

16.
A new method to synthesize a variety of well-controlled polylactide (PLA)-based block copolymers having disulfide linkages at block junctions (PLA-ss-PATRPs) was investigated. The method uses a combination of ring-opening polymerization (ROP) and atom transfer radical polymerization (ATRP) that initiates the synthesis of a new disulfide-labeled double-head initiator having both terminal OH and Br groups (HO-ss-iBuBr). The amount of tin catalyst and polymerization time significantly influenced the control of ROP initiated with HO-ss-iBuBr. A series of ATRP of various methacrylates as well as acrylate and styrene in the presence of the resulting PLA-ss-iBuBr macroinitiators proceeded in a living manner. These well-controlled PLA-ss-PATRPs were further characterized for thermal properties using differential scanning calorimetry and thiol-responsive degradation upon the cleavage of disulfide linkages. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym. Chem. 2013, 51, 3071–3080  相似文献   

17.
As a method for overcoming the challenge of rigorous deoxygenation in copper‐mediated controlled radical polymerization processes [e.g., atom‐transfer radical polymerization (ATRP)], reported here is a simple Cu0‐RDRP (RDRP=reversible deactivation radical polymerization) system in the absence of external additives (e.g., reducing agents, enzymes etc.). By simply adjusting the headspace of the reaction vessel, a wide range of monomers, namely acrylates, methacrylates, acrylamides, and styrene, can be polymerized in a controlled manner to yield polymers with low dispersities, near‐quantitative conversions, and high end‐group fidelity. Significantly, this approach is scalable (ca. 125 g), tolerant to elevated temperatures, compatible with both organic and aqueous media, and does not rely on external stimuli which may limit the monomer pool. The robustness and versatility of this methodology is further demonstrated by the applicability to other copper‐mediated techniques, including conventional ATRP and light‐mediated approaches.  相似文献   

18.
Initiators for continuous activator regeneration atom transfer radical polymerization (ICAR ATRP) of an epoxide‐containing monomer, glycidyl methacrylate (GMA), was successfully carried out using low concentration of catalyst (ca. 105 ppm) at 60 °C in anisole. The copper complex of tris(2‐pyridylmethyl)amine was used as the catalyst, diethyl 2‐bromo‐2‐methylmalonate as the initiator, and 2,2′‐azobisisobutyronitrile as the reducing agent. When moderate degrees of polymerization were targeted (up to 200), special purification of the monomer, other than removal of the polymerization inhibitor, was not required to achieve good control. To synthesize well‐defined polymers with higher degrees of polymerization (600), it was essential to use very pure monomer, and polymers of molecular weights exceeding 50,000 g mol?1 and Mw/Mn = 1.10 were prepared. The developed procedures were used to chain‐extend bromine‐terminated poly(methyl methacrylate) macroinitiator prepared by activators regenerated by electron transfer (ARGET) ATRP. The SnII‐mediated ARGET ATRP technique was not suitable for the polymerization of GMA and resulted in polymers with multimodal molecular weight distributions. This was due to the occurrence of epoxide ring‐opening reactions, catalyzed by SnII and SnIV. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

19.
In this work, growth of lightly crosslinked poly(2‐hydroxyethyl methacrylate) (PHEMA) brushes and subsequent capsule formation using Pickering emulsion interface‐initiated atom transfer radical polymerization (PEII‐ATRP) were investigated. Initiator‐immobilized silica nanoparticles (2.5 initiators/nm2) assembled at the interface of paraffin oil‐in‐water emulsions and ultimately stable Pickering emulsions were formed. PEII‐ATRP was conducted in the water phase of Pickering emulsions from the part of the surfaces of initiator‐immobilized silica nanoparticles exposed to water by using copper(I) chloride/bipyridine as catalyst at 35 °C. As PHEMA has a character of lightly crosslinking when the polymerization occurs in water, novel hybrid capsules (“colloidosomes”) can be obtained and were observed by confocal laser scanning microscope (CLSM) and optical microscopy (OM). The semipermeability of the resultant hollow capsules was demonstrated by the diffusion of 1‐phenylazo‐2‐naphthol. Meanwhile, the conformation of PHEMA chains can be varied in different solvents, which affects the semipermeability of these hybrid hollow capsules. We expect these hollow capsules can be further utilized to develop microdevices for drugs or cells delivery. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1354–1367, 2009  相似文献   

20.
The direct polymerization of deprotonated acidic monomers in aqueous solutions was achieved via surface‐confined atom transfer radical polymerization (SC‐ATRP) to produce surface‐tethered polyelectrolyte brushes. Layers of poly(itaconic acid), poly(methacrylic acid), and sodium poly(styrene sulfonate) were grown by SC‐ATRP from self‐assembled initiator monolayers of [BrC(CH3)2COO(CH2)11S]2 on gold substrates. The polymer layers were characterized with variable‐angle ellipsometry and external‐reflection Fourier transform infrared spectroscopy. Without intervention, atom transfer radical polymerization catalysts were deactivated by complexation with the deprotonated acidic monomers, disproportionation, and dissociation during the polymerization of these monomers in water; the result was the cessation of polymer growth. The addition of an alkali salt to the reaction media suppressed catalyst deactivation, allowing polymer layers to increase in thickness linearly for longer periods of time with respect to salt‐free conditions. This result suggested an improved degree of polymerization control. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 566–575, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号