首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The palladium(0)‐catalyzed polyaddition of bifunctional vinyloxiranes [1,4‐bis(2‐vinylepoxyethyl)benzene ( 1a ) and 1,4‐bis(1‐methyl‐2‐vinylepoxyethyl)benzene ( 1b )] with oxygen nucleophiles such as hydroquinone and bisphenol A gave new unsaturated polyethers containing an allyl aryl ether moiety and pendant hydroxy groups. The polyaddition with 1a was largely affected by the phosphine ligands employed and the reaction temperature. The polyaddition with hydroquinone and bisphenol A was conducted at room temperature for 24 h in tetrahydrofuran in the presence of PPh3 and gave the desired polyethers in good yields, the number‐average molecular weights (Mn) of which were 5700 and 7700, respectively. 1,2‐Bis(diphenylphosphino)ethane (dppe) was not effective in the polyaddition with 1a . The polyaddition of 1b with hydroquinone and bisphenol A gave the corresponding polyethers despite the kinds of ligands employed (PPh3 and dppe), contrary to the polyaddition with 1a . The polyaddition of 1b with 4,4′‐biphenol was also carried out in the presence of Pd2(dba)3 · CHCl3/dppe as a catalyst (where dba is dibenzylideneacetone) and afforded the expected polyether with a high Mn value (Mn = 24,900). In addition, vinyloxirane 1b could reacted with racemic 1,1′‐bi‐2‐naphthol to give the corresponding polyether in a good yield. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 476–482, 2003  相似文献   

2.
3.
蔡明中  章荣立赵红 《中国化学》2004,22(12):1417-1420
Based on the different reactivity of stannyl and bromo groups, (Z)-α-bromovinylstannanes can undergo the cross-coupling reaction with alkynyl Grignard reagents in the presence of tetrakis(triphenylphosphine)palladium(0) catalyst in THF at room temperature to afford stereoselectively 1,3-enynylstannanes in good yields.  相似文献   

4.
(E)‐1,3‐Pentadiene (EP) and (E)‐2‐methyl‐1,3‐pentadiene (2MP) were polymerized to cis‐1,4 polymers with homogeneous and heterogeneous neodymium catalysts to examine the influence of the physical state of the catalyst on the polymerization stereoselectivity. Data on the polymerization of (E)‐1,3‐hexadiene (EH) are also reported. EP and EH gave cis‐1,4 isotactic polymers both with the homogeneous and with the heterogeneous system, whereas 2MP gave an isotactic cis‐1,4 polymer with the heterogeneous catalyst and a syndiotactic cis‐1,4 polymer, never reported earlier, with the homogeneous one. For comparison, the results obtained with the soluble CpTiCl3‐based catalyst (Cp = cyclopentadienyl), which gives cis‐1,4 isotactic poly(2MP), are examined. A tentative interpretation is given for the mechanism of the formation of the stereoregular polymers obtained and a complete NMR characterization of the cis‐1,4‐syndiotactic poly(2MP) is reported. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3227–3232  相似文献   

5.
Polymerizations of 1,3‐dienes using in situ generated catalyst [(2‐methallyl)Ni][B(ArF)4], 6 , (ArF = 3,5‐bis(trifluoromethyl)phenyl) as well as [(2‐methallyl)Ni(mes)][B(ArF)4], 14 , (mes = mesitylene) are reported. Highly sensitive complex 6 polymerizes butadiene (BD) at –30 °C to yield polybutadiene with a Mn of ca. 10 K and 94% cis‐1,4‐enchainment while less reactive isoprene (IP) was polymerized at 23 °C to yield polyisoprene with Mn ca. 7 K. Complex 6 was also shown to polymerize a functionalized diene, 2,3‐bis(4‐trifluoroethoxy‐4‐oxobutyl)‐1,3‐BD, to polymer with Mn = 113 K. The stable and readily isolated arene complex 14 initiates BD and IP polymerizations at somewhat higher temperatures relative to 6 and delivers polymers with higher molecular weights. Complex [(allyl)Ni(mes)][B(ArF)4], 13 , catalyzes polymerization of styrene to yield polystyrene with high conversion, Mn's = ca. 6 K and MWD = 2. The π‐benzyl complex [(η3‐1‐methylbenzyl)Ni(mes)] [B(ArF)4], 19 , was detected as an intermediate following chain transfer by in situ NMR studies. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1901–1912, 2010  相似文献   

6.
The synthesis and self‐polyaddition of new monomers, o‐, m‐, and p‐[(3‐ethyloxetane‐3‐yl)methoxyethyl]benzoic acid (o‐EOMB, m‐EOMB, and p‐EOMB) containing both oxetanyl groups and carboxyl groups were examined. The reactions of o‐EOMB, m‐EOMB, and p‐EOMB in the presence of tetraphenylphosphonium bromide as a catalyst in o‐dichlorobenzene at 150–170 °C resulted in self‐polyaddition to give the corresponding hetero‐telechelic polymers poly(o‐EOMB), poly(m‐EOMB), and poly(p‐EOMB) with Mns = 14,500–33,400 in satisfactory yields. The Mn of poly(o‐EOMB) decreased at higher reaction temperatures than 150 °C, unlike those of poly(m‐EOMB) and poly(p‐EOMB), possibly due to inter‐ or intraester exchange side reactions. It was also found that the thermal properties and solubilities of these polymers were supposed with the proposed structures. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7835–7842, 2008  相似文献   

7.
Polyaddition of an α‐azide‐ω‐alkyne monomer by Cu(PPh3)3Br catalyzed 1,3‐dipolar cycloaddition was thoroughly studied as a model system to investigate the orthogonality of this click chemistry process. Indeed, loss of chain‐end functionality and occurrence of side reactions have a tremendous impact on the molar mass of polymers obtained by step growth polymerization. Particularly, SEC, 1H, and 31P NMR experiments have highlighted the occurrence of a Staudinger side‐reaction between azide chain‐ends and PPh3 from the copper(I) catalyst that dramatically alters Mn of the resulting polytriazoles. A significant enhancement of Mn could be achieved by using an alternative catalyst and optimized experimental conditions, that is, dilution and reaction time. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2470–2476, 2010  相似文献   

8.
A new synthetic strategy for polymers containing amino acids in the main chain was developed. Monomers N‐oxetanylalanine (N‐Oxe‐Ala‐COOH), N‐oxetanylglutamic acid (N‐Oxe‐Glu‐COOH), and N‐oxetanyllysine (N‐Oxe‐Lys‐COOH) containing both oxetanyl and carboxyl groups were synthesized, and self‐polyaddition and self‐copolyaddition of these monomers afforded the corresponding polymers containing amino acids in the main chain [poly(OxAla), poly(OxLys), poly(OxGlu), poly(OxAla‐coOxGlu), poly(OxGlu‐coOxLys), and poly(OxAla‐coOxLys)] with molecular weight in the range of 920–6620, in satisfactory yields. The physical properties, such as solubility, glass transition temperature, and thermal stability, were consistent with the amount of carboxyl groups at the chain ends. Biodegradability of the polymers was examined by the biochemical oxygen demand method; the decomposition ratios of poly(OxAla) and poly(OxAla‐coOxGlu) were about 60%, whereas that of poly(OxGlu) was nearly 100% after 28 days. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

9.
Synthesis of enol carbamates was achieved via nickel‐catalyzed oxidative coupling of formamides with 1,3‐dicarbonyl compounds in the presence of tert ‐butyl hydroperoxide at 40 °C. Various derivatives of enol carbamates were synthesized by this method in good to excellent yields.  相似文献   

10.
《先进技术聚合物》2018,29(8):2204-2215
New aromatic poly(ether ketone amide)s containing 4‐aryl‐2,6‐diphenylpyridine units were prepared by the heterogeneous palladium‐catalyzed carbonylative polymerization of aromatic diiodides with ether ketone units, aromatic diamines bearing pyridine groups, and carbon monoxide. Polymerizations were performed in N,N‐dimethyl‐ acetamide (DMAc) at 120°C in the presence of a magnetic nanoparticles‐supported bidentate phosphine palladium complex [Fe3O4@SiO2‐2P‐PdCl2] as catalyst with 1,8‐diazabicycle[5,4,0]‐7‐undecene (DBU) as base and generated poly(ether ketone amide)s with inherent viscosities up to 0.79 dL/g. All the polymers were soluble in many organic solvents. These polymers showed glass transition temperatures between 219°C and 257°C and 10% weight loss temperatures ranging from 467°C to 508°C in nitrogen. These polyamides could be cast into transparent, flexible, and strong films from DMAc solution with tensile strengths of 86.4 to 113.7 MPa, tensile moduli of 2.34 to 3.19 GPa, and elongations at break of 5.2% to 6.9%. These polymers also exhibited good optical transparency with an ultraviolet‐visible absorption cut‐off wavelength in the 371 to 384‐nm range. Importantly, the new heterogeneous palladium catalyst can easily be recovered from the reaction mixture by simply applying an external magnet and recycled at least 8 times without significant loss of activity. Our catalytic system not only avoids the use of an excess of PPh3 and prevents the formation of palladium black, but also solves the basic problems of palladium catalyst recovery and reuse.  相似文献   

11.
Three novel functionalized polynorbornenes (PNB) with pendant dimethyl carboxylate group (carboxylates—acetate, propionate, and butyrate) are synthesized as a vinyl‐type with a palladium (II) catalyst in high yield. The effects of size of substitutents, molar ratio of monomer to catalyst, solvent polarity, reaction time, and temperature on the polymerization of exo‐norbornene dimethyl propionate were systematically investigated. The low molar ratio and temperature, as well as high polarity of solvent, and long reaction time, are favorable for the enhancement of the monomer conversion, especially, the solvent have an obvious effect on the catalyst activity. The resulting poly(cis‐norbornene‐exo‐2,3‐dimethyl carboxylates) (PNB‐dimethyl carboxylates) show good solubility in common organic solvent and high thermal stability up to 360 °C. The glass transition temperature was detected by DMA at 331, 324, and 318 °C for acetate, propionate, and butyrate, respectively. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3391–3399, 2007  相似文献   

12.
This work describes the synthesis of π‐conjugated polymers possessing arylene and 1,3‐butadiene alternating units in the main chain by the reaction of α,β‐unsaturated ester/nitrile containing γ‐H with aromatic/heteroaromatic aldehyde compound. By using 4‐(4‐formylphenyl)‐2‐butylene acid ethyl ester as a model monomer, the different polymerization conditions, including catalyst, catalyst amount, and solvent, are optimized. The polymerization of 4‐(4‐formylphenyl)‐2‐butylene acid ethyl ester is carried out by refluxing in ethanol for 72 h with 1,8‐diazabicyclo[5.4.0]undec‐7‐ene (DBU) as a catalyst to give a 1,3‐butadiene‐containing π‐conjugated polymer, poly(phenylene‐1,3‐butadiene), in 84.3% yield with and / (PDI) estimated as 6172 and 1.65, respectively. Based on this new methodology, a series of π‐conjugated polymers containing 1,3‐butadiene units with different substituents are obtained in high yields. A possible mechanism is proposed for the polymerization through a six‐membered ring transition state and then a 1,5‐H shift intermediate.

  相似文献   


13.
Cationic ring‐opening polymerizations of 5‐alkyl‐ or 5,7‐dialkyl‐1,3‐dehydroadamantanes, such as 5‐hexyl‐ ( 4 ), 5‐octyl‐ ( 5 ), 5‐butyl‐7‐isobutyl‐ ( 6 ), 5‐ethyl‐7‐hexyl‐ ( 7 ), and 5‐butyl‐7‐hexyl‐1,3‐dehydroadamantane ( 8 ), were carried out with super Brønsted acids, such as trifluoromethanesulfonic acid or trifluoromethanesulfonimide in CH2Cl2 or n‐heptane. The ring‐opening polymerizations of inverted carbon–carbon bonds in 4–8 proceeded to afford corresponding poly(1,3‐adamantane)s in good to quantitative yields. Poly( 4–8 )s possessing alkyl substituents were soluble in 1,2‐dichlorobenzene, although a nonsubstituted poly(1,3‐adamantane) was not soluble in any organic solvent. In particular, poly( 8 ) exhibited the highest molecular weight at around 7500 g mol?1 and showed excellent solubility in common organic solvents, such as THF, CHCl3, benzene, and hexane. The resulting poly( 4–8 )s containing adamantane‐1,3‐diyl linkages showed good thermal stability, and 10% weight loss temperatures (T10) were observed over 400 °C. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4111–4124  相似文献   

14.
15.
Highly selective synthesis of 1‐substituted (E)‐buta‐1,3‐dienes via palladium‐catalyzed Suzuki–Miyaura cross‐coupling of (E)‐alkenyl iodides with 4,4,5,5‐tetramethyl‐2‐vinyl‐1,3,2‐dioxaborolane ( 1 ) is reported. The vinylboronate pinacol ester ( 1 ) acts as a vinyl building block to show high chemoselectivity for the Suzuki–Miyaura pathway versus Heck coupling in the presence of biphasic conditions (Pd(PPh3)4, aqueous K2CO3, toluene and ethanol). Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
A novel NHC–Pd complex of 1,3‐bis (4‐ethoxycarbonylphenyl) imidazolium chloride has been synthesized and characterized by 1H NMR, 13C NMR, IR and X‐ray single‐crystal diffraction studies. TG analysis shows that the NHC‐Pd complex is stable under 208 °C. The catalytic activities have been explored for the synthesis of axially chiral N‐(2′‐methoxy‐1,1′‐binaphthalen‐2‐yl) benzophenone hydrazone. The result indicates that the novel NHC‐Pd complex can achieve better catalytic activity than the Pd‐phosphine catalysts in the synthesis of axially chiral N‐(2′‐methoxy‐1,1′‐binaphthalen‐2‐yl) benzophenone hydrazone.  相似文献   

17.
This article reports a new one‐pot method for polymer preparation, which involves double click chemistry. In one pot, two click reactions take place sequentially by adding the reactants step by step. The first click reaction is to produce the monomer for the second click reaction for polymerization. The click polymerization differs from the general click polymerization with the reaction of diazides and dialkynes. Nitrile oxides, produced in situ by the first click reaction of the formation of aldoxime, instead azides, avoiding the poisonousness and explosiveness of azides and being much safer and easy to operate. And 3,5‐disubstitute polyisoxazoles are produced by the copper(I)‐catalyzed the 1,3‐dipolar cycloaddition of nitrile oxides with alkynes in high yields by our one‐pot method. The resulting polyisoxazoles agree well with the structural assignment obtained by the 1H NMR and IR analyses, with high molecular weights, narrow molecular weight distribution (Mw/Mn < 1.2) and high regioregularity. The poor solubility of these polymers is found to be caused by their crystallization. Improvement of solubility is achieved by modifying the structures of alkyne monomers. All the polymers are thermally stable, losing little of their weights when heated to ~350 °C. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

18.
The grafting reaction of poly(1,3‐cyclohexadienyl)lithium onto fullerene‐C60 (C60) was strongly affected by the nucleophilicity of poly(1,3‐cyclohexadiene) (PCHD) carbanions and the polymer chain microstructure, and progressed via step‐by‐step reactions. A star‐shaped PCHD, having a maximum of four arms, was obtained from poly(1,3‐cyclohexadienyl)lithium composed of all 1,4‐cyclohexadiene (1,4‐CHD) units. The rate of the grafting reaction was accelerated by the addition of amine. The grafting density of PCHD arms onto C60 decreased with an increase in the molar ratio of 1,2‐cyclohexadiene (1,2‐CHD) units. The electron‐transfer reaction from PCHD carbanions to C60 did not occur in either a nonpolar solvent or a polar solvent. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3282–3293, 2008.  相似文献   

19.
Application of the Suzuki cross‐coupling reaction for efficient synthesis of diverse substituted biaryl‐chromen‐4‐ones using an optimized palladium(0) catalyst system is reported. The coupling of arylboronic acids with the resin‐bound bromoflavanones which were prepared by organoselenium‐induced regioselective intramolecular cyclization of bromo‐2‐hydroxylchalcones proceeded smoothly. Biaryl‐chromen‐4‐ones were synthesized by subsequent selenoxide syn‐elimination in good total yields.  相似文献   

20.
Cyclopolymerization of 1,5‐hexadiene has been carried out at various temperatures in toluene by using three different stereospecific metallocene catalysts—isospecific rac‐(EBI)Zr(NMe2)2 [EBI: ethylenebis(1‐indenyl), Cat 1], syndiospecific Me2C(Cp)(Flu)ZrMe2 (Cp = 1‐cyclopentadienyl, Flu = 1‐fluorenyl, Cat 2), and aspecific CpZrMe2 (Cp*: pentamethylcyclopentadienyl, Cat 3) compounds in the presence of Al(i‐Bu)3 and [Ph3C][B(C6F5)4]—in order to study the effect of polymerization temperature and catalyst stereospecificity on the property and microstructure of poly(methylene‐1,3‐cyclopentane) (PMCP). The activities of catalysts decrease in the following order: Cat 1 > Cat 2 > Cat 3. PMCPs produced by Cat 1 are not completely soluble in toluene, but those by Cat 2 and Cat 3 are soluble in toluene. trans‐Diisotactic rich PMCPs are produced by Cat 1 and Cat 2, and cis‐atactic PMCP by Cat 3. The cis/trans ratio of PMCP by Cat 1 and Cat 2 is relatively insensitive to the polymerization temperature, but that by Cat 3 is highly sensitive to the polymerization temperature. Melting temperatures of PMCP produced increase with the cis to trans ratio of rings. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1520–1527, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号