首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To synthesize polyesters and periodic copolymers catalyzed by nonafluorobutanesulfonimide (Nf2NH), we performed ring‐opening copolymerizations of cyclic anhydrides with tetrahydrofuran (THF) at 50–120 °C. At high temperature (100–120 °C), the cyclic anhydrides, such as succinic anhydride (SAn), glutaric anhydride (GAn), phthalic anhydride (PAn), maleic anhydride (MAn), and citraconic anhydride (CAn), copolymerized with THF via ring‐opening to produce polyesters (Mn = 0.8–6.8 × 103, Mn/Mw = 2.03–3.51). Ether units were temporarily formed during this copolymerization and subsequently, the ether units were transformed into esters by chain transfer reaction, thus giving the corresponding polyester. On the other hand, at low temperature (25–50 °C), ring‐opening copolymerizations of the cyclic anhydrides with THF produced poly(ester‐ether) (Mn = 3.4–12.1 × 103, Mw/Mn = 1.44–2.10). NMR and matrix‐assisted laser desorption/ionization time‐of‐flight mass spectra revealed that when toluene (4 M) was used as a solvent, GAn reacted with THF (unit ratio: 1:2) to produce periodic copolymers (Mn = 5.9 × 103, Mw/Mn = 2.10). We have also performed model reactions to delineate the mechanism by which periodic copolymers containing both ester and ether units were transformed into polyesters by raising the reaction temperature to 120 °C. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

2.
We prepared 2,2‐dibutyl‐2‐stanna‐1,3‐dithiacycloalkanes from dibutyltin oxide and α,ω‐dimercaptoalkanes. Heterocycles with five‐, six‐, seven‐, or nine‐ring members were used as bifunctional monomers for polycondensations with aliphatic dicarboxylic acid chlorides. These polycondensations conducted in bulk were highly exothermic and yielded poly(thio ester)s with number average molecular weights (Mn's) in the range of 5000–30,000 Da. These poly(thio ester)s proved to be rapidly crystallizing materials with melting temperatures in the range of 90–150 °C. In addition to the success of the new synthetic approach, two interesting and unpredictable results were obtained. All volatile species detectable by matrix assisted laser desorption induced‐time of flight (MALDI‐TOF) mass spectrometry were cyclic oligo‐ and poly(thio ester)s. Second, several polyesters showed a reversible first‐order change of the crystal modification as identified by differential scanning calorimetry measurements and X‐ray scattering with variation of the temperature. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3656–3664, 2000  相似文献   

3.
A thermotropic copoly(amide ester) exhibiting a nematic mesophase within the range of 240–360 °C was prepared by the solution copolycondensation of p‐aminobenzoic acid (40–70 mol %) and m‐hydroxybenzoic acid with diphenyl chlorophosphate in pyridine in the presence of LiCl. For control of the sequence distribution of p‐aminobenzoic acid, the amount of LiCl and the dropwise addition of the phosphate were examined. The transition temperatures (from a solid phase to a nematic mesophase) of the resultant copolymers were affected by the period of addition and the amounts of the aminobenzoic acid and LiCl and were investigated in terms of the distributions of the monomers determined by 1H NMR. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1775–1780, 2002  相似文献   

4.
Nylon 6 was reacted with trimellitic anhydride (TMA) at 230 °C so that a complete degradation to N‐(5‐carboxy‐pentamethylene) trimellitimide was obtained. The crude imide dicarboxylic acid was reacted in situ with 4,4′‐bisacetoxy biphenyl whereby an enantiotropic smectic polyesterimide was obtained. Analogous degradation and polycondensation reactions were also performed with nylon 11 and nylon 12. Parallel syntheses were conducted with isolated imide dicarboxylic acids. Furthermore, the crude imide dicarboxylic acid obtained from nylons 6, 11, and 12 were polycondensed in situ with diacetates of hydroquinone or substituted hydroquinone in combination with various amounts of acetoxy benzoic acid or 6‐acetoxy‐2‐naphthoic acid. In this way enantiotropic nematic copoly(ester‐imide)s were prepared. The phase transition of all LC‐poly(ester‐imide)s were characterized by DSC measurement and optical microscopy. In addition, a series of isotropic poly(ester‐imides)s was prepared using nonmesogenic bisphenols, such as bisphenol A, as comonomers. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1630–1638, 2000  相似文献   

5.
In this article, we describe the one‐step synthesis of polyesters having pendent hydroxyl groups by Lewis acid‐catalyzed, regioselective, dehydration polycondensations of diols (glycerol and sorbitol) and dicarboxylic acids [tartaric acid (TA) and malic acid (MA)] containing pendent hydroxyl groups, using low temperature polycondensation technique. Direct polycondensations of TA or MA and 1,9‐nonanediol catalyzed by scandium trifluoromethanesulfonate [Sc(OTf)3] successfully yielded linear polyesters having hydroxyl functionality (Mn = ca. 1.0 × 104). To demonstrate the reactivity of the pendent hydroxyl group, a glycosidation was performed. Poly(nonamethylene L ‐malate) showed significant higher biodegradability, compared with poly(nonamethylene L ‐tartrate) or poly(nonamethylene succinate). Stable poly(nonamethylene L ‐tartrate) emulsion could be prepared using poly(vinyl alcohol) as the surfactant, although emulsions consisting of poly(nonamethylene succinate) were unstable and phase‐separated within a few days. Furthermore, direct polycondensations of TA and diethylene glycol (DEG) or triethylene glycol (TEG) successfully produced water‐soluble polyesters having hydroxyl groups. This new polycondensation system may be extremely effective not only for advanced material design using functional monomers but also for effective utilization of biomass resources as chemical substances. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5747–5759, 2009  相似文献   

6.
A new six‐membered cyclic carbonate monomer, 5‐benzyloxy‐trimethylene carbonate, was synthesized from 2‐benzyloxy‐1,3‐propanediol, and the corresponding polycarbonate, poly(5‐benzyloxy‐trimethylene carbonate) (PBTMC), was further synthesized by ring‐opening polymerization in bulk at 150 °C using aluminum isobutoxide [Al(OiBu)3], aluminum isopropoxide, or stannous octanoate as an initiator. The results showed that a higher molecular weight polycarbonate could be obtained in the case of Al(OiBu)3. The protecting benzyl group was removed subsequently by catalytic hydrogenation to give a polycarbonate containing a pendant hydroxyl group (PHTMC). The polycarbonates obtained were characterized by Fourier transform infrared spectroscopy, 1H NMR,13C NMR, gel permeation chromatography, and DSC. NMR results of PBTMC offered no evidence for decarboxylation occurring during the propagation. The pendant hydroxyl group in PHTMC resulted in an enhancement of the hydrophilicity of the polycarbonate. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 70–75, 2002  相似文献   

7.
The melt ring‐opening/condensation reaction of trans‐4‐hydroxy‐N‐benzyloxycarbonyl‐L‐proline (N‐CBz‐Hpr) with cyclic carbonate [trimethylene carbonate (tri‐MC) or tetramethylene carbonate (tetra‐MC)] at a wide range of molar fractions in the feed produced new degradable poly(ester‐carbonate)s. The influence of reaction conditions such as polymerization time and temperature on the yield and inherent viscosity of the copolymers was investigated. The polymerizations were carried out in bulk at 140 °C with 1.5 wt % stannous octoate as a catalyst for 30 h. The poly(ester‐carbonate)s obtained were characterized by Fourier transform infrared spectroscopy, 1H NMR, differential scanning calorimetry, gel permeation chromatography, and Ubbelohde viscometry. The copolymers synthesized exhibited moderate molecular weights with rather narrow molecular weight distributions. The values of the glass‐transition temperature (Tg) of the copolymers depend on the molar fractions of cyclic carbonate. For the poly(N‐CBz‐Hpr‐co‐tri‐MC) system, with a decreased tri‐MC content from 93 to 16 mol %, the Tg increased from ?10 to 60 °C. Similarly, for the poly(N‐CBz‐Hpr‐co‐tetra‐MC) system, when the tetra‐MC content decreased from 80 to 8 mol %, the Tg increased from ?18 to 52 °C. The relationship between the poly(N‐CBz‐Hpr‐co‐tri‐MC) Tg and the compositions was in approximation with the Fox equation. In vitro degradation of these poly(N‐CBz‐Hpr‐co‐tri‐MC)s was evaluated from weight‐loss measurements. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1435–1443, 2003  相似文献   

8.
Starting with 3,3′,4,4′‐biphenyltetracarboxylic dianhydride and methyl aminobenzoate, we synthesized a novel rodlike imide‐containing monomer, N,N′‐bis[p‐(methoxy carbonyl) phenyl]‐biphenyl‐3,3′,4,4′‐tetracarboxydiimide (BMBI). The polycondensation of BMBI with dimethyl terephthalate and ethylene glycol yielded a series of copoly(ester imide)s based on the BMBI‐modified poly(ethylene terephthalate) (PET) backbone. Compared with PET, these BMBI‐modified polyesters had higher glass‐transition temperatures and higher stiffness and strength. In particular, the poly(ethylene terephthalate imide) PETI‐5, which contained 5 mol % of the imide moieties, had a glass‐transition temperature of 89.9 °C (11 °C higher than the glass‐transition temperature of PET), a tensile modulus of 869.4 MPa (20.2 % higher than that of PET), and a tensile strength of 80.8 MPa (38.8 % higher than that of PET). Therefore, a significant reinforcing effect was observed in these imide‐modified polyesters, and a new approach to higher property polyesters was suggested. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 852–863, 2002; DOI 10.1002/pola.10169  相似文献   

9.
The influence of the structure of succinic or glutaric anhydride modified linear unsaturated (epoxy) polyesters on the course of the cure reaction with styrene initiated by benzoyl peroxide (BPO) or the mixture of benzoyl peroxide/tetrahydrophthalic anhydride (BPO/THPA) or benzoyl peroxide/maleic anhydride, as well as viscoelastic properties and thermal behavior of their styrene copolymers have been studied by DSC, DMA, and TGA analyses. Additionally, mechanical properties: flexural properties using three-point bending test and Brinell’s hardness for studied copolymers were evaluated. It was confirmed that the structure of used polyesters had a considerable influence on the course of the cure reaction with styrene, viscoelastic, thermal, and mechanical properties of prepared styrene copolymers. Generally, one or two asymmetrical peaks for the cure reaction of succinic or glutaric anhydride modified linear unsaturated epoxy polyesters with styrene were observed. They were connected with various cure reaction, e.g., copolymerization of carbon–carbon double bonds of polyester with styrene, thermal curing of epoxy groups, polyaddition reaction of epoxy to anhydride groups in dependence of used curing system. In addition, only one asymmetrical, exothermic peak attributed to the copolymerization process of succinic or glutaric anhydride modified linear unsaturated polyesters with styrene was visible. Moreover, the obtained styrene copolymers based on succinic or glutaric anhydride modified linear unsaturated epoxy polyesters were characterized by higher values of E20 °\textC E_{{20\,^{\circ}{\text{C}}}}^{\prime} , T g, E″, ν e, E mod, F max, hardness, IDT, FDT but lower ε − F max compared to those values observed for styrene copolymers prepared in the presence of succinic or glutaric anhydride modified linear unsaturated polyesters. This supported to the production of stiffer and more thermally stable polymeric structure of copolymers based on unsaturated epoxy polyesters. Moreover, the copolymers prepared in the use of glutaric anhydride modified linear unsaturated (epoxy) polyesters were described by lower values of E20 °\textC E_{{20\,^{\circ}{\text{C}}}}^{\prime} , T g, E″, ν e, E mod, F max, hardness, IDT, FDT but higher ε − F max than those based on succinic anhydride modified linear unsaturated (epoxy) polyesters. The presence of longer aliphatic chain length in polyester’s structure leads to produce more flexible network structure of styrene copolymers based on glutaric anhydride modified linear unsaturated (epoxy) polyesters than those based on succinic anhydride modified linear unsaturated (epoxy) polyesters.  相似文献   

10.
Novel copolycarbonates containing 1,4:3,6‐dianhydro‐D ‐glucitol or 1,4:3,6‐dianhydro‐D ‐mannitol units, with various methylene chain lengths, were synthesized by bulk and solution polycondensations, of several combinations of carbonate‐modified sugar derivatives and aliphatic diols. Bulk polycondensations of 1,4:3,6‐dianhydro‐2,5‐bis‐O‐(phenoxycarbonyl)‐D ‐glucitol or 1,4:3,6‐dianhydro‐2,5‐bis‐O‐(phenoxycarbonyl)‐D ‐mannitol with four α,ω‐alkanediols having methylene chain lengths of 4, 6, 8, and 10, respectively, at 180 °C afforded the corresponding copolycarbonates with number‐average molecular weight (Mn) values up to 19.2 × 103. 13C NMR analysis disclosed that these polymers had scrambled structures in which the sugar carbonate and aliphatic carbonate moieties were nearly randomly distributed along a polymer chain. However, solution polycondensations between 1,4:3,6‐dianhydro‐2,5‐bis‐O‐(p‐nitrophenoxycarbonyl)‐D ‐glucitol or 1,4:3,6‐dianhydro‐2,5‐bis‐O‐(p‐nitrophenoxycarbonyl)‐D ‐mannitol, and the α,ω‐alkanediols in sulfolane or dimethyl sulfoxide at 60 °C gave well‐defined copolycarbonates having regular structures consisting of alternating sugar carbonate and aliphatic carbonate moieties with Mn values up to 33.8 × 103. Differential scanning calorimetry demonstrated that all the copolycarbonates were amorphous with glass‐transition temperatures ranging from 1 to 65 °C, which decreased with increasing lengths of the methylene chain of the aliphatic diols. Additionally, all the copolycarbonates were stable up to 310–330 °C as estimated by thermogravimetric analysis. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2312–2321, 2003  相似文献   

11.
Water‐soluble poly(ester‐carbonate) having pendent amino and carboxylic groups on the main‐chain carbon is reported for the first time. This article describes the melt ring‐opening/condensation reaction of trans‐4‐hydroxy‐N‐benzyloxycarbonyl‐L ‐proline (N‐CBz‐Hpr) with 5‐methyl‐5‐benzyloxycarbonyl‐1,3‐dioxan‐2‐one (MBC) at a wide range of molar fractions. The influence of reaction conditions such as catalyst concentration, polymerization time, and temperature on the number average molecular weight (Mn) and molecular weight distribution (Mw/Mn) of the copolymers was investigated. The polymerizations were carried out in bulk at 110 °C with 3 wt % stannous octoate as a catalyst for 16 h. The poly(ester‐carbonate)s obtained were characterized by Fourier transform infrared spectroscopy, 1H NMR, differential scanning calorimetry, and gel permeation chromatography. The copolymers synthesized exhibited moderate molecular weights (Mn = 6000–14,700 g mol?1) with reasonable molecular weight distributions (Mw/Mn = 1.11–2.23). The values of the glass‐transition temperature (Tg) of the copolymers depended on the molar fractions of cyclic carbonate. When the MBC content decreased from 76 to 12 mol %, the Tg increased from 16 to 48 °C. The relationship between the poly(N‐CBz‐Hpr‐co‐MBC) Tg and the compositions was in approximation with the Fox equation. In vitro degradation of these poly(N‐CBz‐Hpr‐co‐MBC)s was evaluated from weight‐loss measurements and the change of Mn and Mw/Mn. Debenzylation of 3 by catalytic hydrogenation led to the corresponding linear poly(ester‐carbonate), 4 , with pendent amino and carboxylic groups. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2303–2312, 2004  相似文献   

12.
Two novel sulfonate phenol ligands—3,3′‐di‐tert‐butyl‐2′‐hydroxy‐5,5′,6,6′‐tetramethyl‐biphenyl‐2‐yl 4‐X‐benzenesulfonate (X?CF3, LCF3 ‐H, and X?OCH3, LOMe ‐H)—were prepared through the sulfonylation of 3,3′‐di‐tert‐butyl‐5,5′,6,6′‐tetramethylbiphenyl‐2,2′‐diol with the corresponding 4‐substituted benzenesulfonyl chloride (1 equiv.) in the presence of excess triethylamine. Magnesium (Mg) complexes supported by sulfonate phenoxide ligands were synthesized and characterized structurally. The reaction of MgnBu2 with L‐H (2 equiv.) produces the four‐coordinated monomeric complexes ( LCF3 )2Mg ( 1 ) and ( LOMe )2Mg ( 2 ). Complexes 1 and 2 are efficient catalysts for the ring‐opening polymerization of ε‐caprolactone (ε‐CL) and trimethylene carbonate (TMC) in the presence of 9‐anthracenemethanol; complex 1 catalyzes the polymerization of ε‐CL and TMC in a controlled manner, yielding polymers with the expected molecular weights and narrow polydispersity indices (PDIs). In ε‐CL polymerization, the activity of complex 1 is greater than that of complex 2 , likely because of the greater Lewis acidity of Mg2+ metal caused by the electron‐withdrawing substitute trifluoromethyl (? CF3) at the 4‐position of the benzenesulfonate group. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3564–3572, 2010  相似文献   

13.
Three series of fully aromatic ionomers with naphthalene moieties and pendant sulfobenzoyl side chains were prepared via K2CO3 mediated nucleophilic aromatic substitution reactions. The first series consisted of poly(arylene ether)s prepared by polycondensations of 2,6‐difluoro‐2′‐sulfobenzophenone (DFSBP) and 2,6‐dihydroxynaphthalene or 2,7‐dihydroxynaphthalene (2,7‐DHN). In the second series, copoly(arylene ether nitrile)s with different ion‐exchange capacities (IECs) were prepared by polycondensations of DFSBP, 2,6‐difluorobenzonitrile (DFBN), and 2,7‐DHN. In the third series, bis(4‐fluorophenyl)sulfone was used instead of DFBN to prepare copoly(arylene ether sulfone)s. Thus, all the ionomers had sulfonic acid units placed in stable positions close to the electron withdrawing ketone link of the side chains. Mechanically strong proton‐exchange membranes with IECs between 1.1 and 2.3 meq g−1 were cast from dimethylsulfoxide solutions. High thermal stability was indicted by high degradation temperatures between 266 and 287 °C (1 °C min−1 under air) and high glass transition temperatures between 245 and 306 °C, depending on the IEC. The copolymer membranes reached proton conductivities of 0.3 S cm−1 under fully humidified conditions. At IECs above ∼1.6 meq g−1, the copolymer membranes reached higher proton conductivities than Nafion® in the range between −20 and 120 °C. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

14.
Low molar mass hyperbranched polyesters were prepared by polycondensation of 1,1,1‐tris(hydroxymethyl)ethane and various dimethyl esters of aliphatic dicarboxylic acids in bulk. The usefulness of nontoxic bismuth salts as transesterification catalysts for these polycondensations was studied. The maximum conversion increased, and the reaction time decreased in the following sequence of increasing reactivity: dimethyl sebacate < adipate < glutarate < succinate. Regardless of the monomer combination, gelation occurred at conversions > 91.5%. The hyperbranched structure was proven by 1H NMR spectroscopy and the absence of cyclic elements by MALDI‐TOF mass spectrometry. Quantitative acylation of all CH2OH groups was achieved with an excess of acetic anhydride or methycrylic anhydride. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 231–238, 2009  相似文献   

15.
A general method for preparation of ferrocene‐containing monoamines (5–7) and diamines (10, 11) starting from the corresponding quaternary ammonium iodide 3 and ferrocene mono‐ (4) and dithiaaliphatic acids (8, 9) was developed. Amines obtained have been characterized as acet‐ and benzamides (12–15). The oligoamide precursors (16, 17, 22, 23) were synthesized by reactions of succinic or glutaric anhydride with amines (6, 7, 10, 11). Their conversion into oligoamide analogs (20, 21, 25) failed. The desired diamides (20, 21) were prepared by condensation of amines (6, 7) with alkanedioyl chlorides, (CH2)n(COCl)2 (n = 0, 1, 2, 3). Reactions of diamine 10 with succinic or glutaric anhydride gave amino acids 28—formal monomers for the planned oligomerization. Oligomers 29 were synthesized by condensation of equimolar amounts of diamines 10 and the above mentioned alkanedioyl chlorides in dichloromethane at 0°C. The structure of oligomers 29 was indicated from their IR and 1H‐NMR spectra in comparison with the model substances 12–28. The degree of polymerization of compounds 29 was determined by 1H‐NMR end‐group analysis (DPn = 4–6). © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 25–36, 1999  相似文献   

16.
AB‐type block copolymers with poly(trimethylene carbonate) [poly(TMC); A] and poly(ethylene oxide) [PEO; B; number‐average molecular weight (Mn) = 5000] blocks [poly(TMC)‐b‐PEO] were synthesized via the ring‐opening polymerization of trimethylene carbonate (TMC) in the presence of monohydroxy PEO with stannous octoate as a catalyst. Mn of the resulting copolymers increased with increasing TMC content in the feed at a constant molar ratio of the monomer to the catalyst (monomer/catalyst = 125). The thermal properties of the AB diblock copolymers were investigated with differential scanning calorimetry. The melting temperature of the PEO blocks was lower than that of the homopolymer, and the crystallinity of the PEO block decreased as the length of the poly(TMC) blocks increased. The glass‐transition temperature of the poly(TMC) blocks was dependent on the diblock copolymer composition upon first heating. The static contact angle decreased sharply with increasing PEO content in the diblock copolymers. Compared with poly(TMC), poly(TMC)‐b‐PEO had a higher Young's modulus and lower elongation at break. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4819–4827, 2005  相似文献   

17.
Carboxylic acid chloride end‐functionalized all‐aromatic hyperbranched polyesters were prepared from the bulk polycondensation of the AB2 monomer 5‐(trimethylsiloxy)isophthaloyl dichloride. The acid chloride end functionality of the hyperbranched polyester was modified in situ with methanol and yielded methyl ester ends in a one‐pot process. Chain‐end functionalization and esterification were quantitative according to both potentiometric titration and 1H NMR analysis. The signals of 1H and 13C NMR spectra of the esterified hyperbranched polyester were fully assigned from model compounds of the focal, linear, dendritic, and terminal units. The degree of branching and molecular weight averages measured by 1H and 13C NMR spectroscopy and multidetector size exclusion chromatography increased systematically with increasing polymerization temperatures between 80 and 200 °C. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2855–2867, 2002  相似文献   

18.
《先进技术聚合物》2018,29(6):1684-1696
The macroinitiator of poly(1,3‐trimethylene carbonate) (PTMC) with number‐average molecular weight ( ) of 9.6 × 103 g mol−1 was synthesized by ring‐opening polymerization at 120°C. Then, the novel terpolymer P(TMC‐b‐(LLA‐ran‐GA)) consisting of PTMC homopolymer segment attached with various monomer molar ratios of L‐lactide (LLA) and glycolide (GA) random copolymerization block was prepared with about 5.0 × 104 g mol−1 by ring‐opening polymerization in bulk at 140°C. The tailored molecular structures of P(TMC‐b‐(LLA‐ran‐GA)) were characterized by 1H nuclear magnetic resonance, 13C NMR, FTIR, and gel permeation chromatography, and chain microstructure analysis was performed in detail with 13C NMR spectroscopy. The effect of GA units on the thermal and crystallization behaviors, mechanical properties, as well as biodegradability of terpolymers was investigated by differential scanning calorimetry, wide‐angle X‐ray diffraction, stress‐strain measurements, and in vitro tests in comparison with corresponding poly(trimethylene carbonate‐blockL‐lactide) copolymer P(TMC‐bLLA). The results show that amorphous PTMC segments have a significant effect on condensed state behavior of the terpolymers, and the incorporation of GA units strongly decreases the crystallinity and crystallization ability of LLA segment within terpolymers because of more random LLA‐GA sequence and shorter average LLA block length. Meanwhile, the toughness of materials is greatly improved, and in vitro degradation is also accelerated. Peripheral vascular stents were 3D printed for the first time and met the requirements for application. The results show totally biodegradable terpolymers with unique molecular structure, and modifiable properties are promising new biomaterials with advanced performance for biomedical application.  相似文献   

19.
Polymerization of a trimethylene carbonate (TMC) in an aqueous solution was investigated by gel permeation chromatography, Fourier transform infrared spectroscopy, and nuclear magnetic resonance. The polymerization reaction proceeded rapidly in the aqueous solution and high conversion was achieved in a relatively short time. 1,3‐Propanediol (PPD) formed by hydrolysis of TMC was used as the initiator. The TMC oligomer obtained by ring‐opening polymerization had a TMC unit backbone with terminal 3‐hydroxypropyl groups at both chain ends. The oligomer underwent transesterification reaction with elimination of PPD, resulting in a gradual increase in the molecular weight of the product. The molecular weight was affected by the concentration of TMC. The thermal properties of the polymers were investigated by differential scanning calorimetry. Polymers within the molecular weight (Mn) range from 6.0 × 103 to 2.3 × 104 g/mol crystallized, and endothermic peaks corresponding to the melting temperature were observed. The glass transition temperature increased with the molecular weight of the polymers. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1485–1492, 2010  相似文献   

20.
The ring‐opening polymerization of trimethylene carbonate (TMC) using homoleptic lanthanide guanidinate complexes [RNC(NR′2)NR]3Ln as single component initiators has been fully investigated for the first time. The substituents on guanidinate ligands and center metals show great effect on the catalytic activities of these complexes, that is, ? N(CH2)5 > ? NiPr2 > ? NPh2 (for R′), ? Cy > ? iPr (for R), and Yb > Sm > Nd. Among them, [Ph2NC(NCy)2]3Yb shows the highest catalytic activity. Some features and kinetic behaviors of the TMC polymerization initiated by [Ph2NC(NCy)2]3Yb were studied in detail. The polymerization rate is first order, with the monomer concentration and Mn of the polymer increasing with the polymer yield increasing linearly. The results indicated the present system having “living character.” A mechanism that the polymerization occurs via acyl‐oxygen bond cleavage rather than alkyl‐oxygen bond cleavage was proposed. The copolymerization of TMC with ?‐caprolactone (ε‐CL) initiated by [Ph2NC(NCy)2]3Yb was also tested. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1778–1786, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号