首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hetero‐arm star ABC‐type terpolymers, poly(methyl methacrylate)‐polystyrene‐poly(tert‐butyl acrylate) (PMMA‐PS‐PtBA) and PMMA‐PS‐poly(ethylene glycol) (PEG), were prepared by using “Click” chemistry strategy. For this, first, PMMA‐b‐PS with alkyne functional group at the junction point was obtained from successive atom transfer radical polymerization (ATRP) and nitroxide‐mediated radical polymerization (NMP) routes. Furthermore, PtBA obtained from ATRP of tBA and commercially available monohydroxyl PEG were efficiently converted to the azide end‐functionalized polymers. As a second step, the alkyne and azide functional polymers were reacted to give the hetero‐arm star polymers in the presence of CuBr/N,N,N′,N″,N″‐pentamethyldiethylenetriamine ( PMDETA) in DMF at room temperature for 24 h. The hetero‐arm star polymers were characterized by 1H NMR, GPC, and DSC. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5699–5707, 2006  相似文献   

2.
An easy and novel approach to the synthesis of functionalized nanostructured polymeric particles is reported. The surfactant‐free emulsion polymerization of methyl methacrylate in the presence of the crosslinking reagent 2‐ethyl‐2‐(hydroxy methyl)‐1,3‐propanediol trimethacrylate was used to in situ crosslink colloid micelles to produce stable, crosslinked polymeric particles (diameter size ~ 100–300 nm). A functionalized methacrylate monomer, 2‐methacryloxyethyl‐2′‐bromoisobutyrate, containing a dormant atom transfer radical polymerization (ATRP) living free‐radical initiator, which is termed an inimer (initiator/monomer), was added to the solution during the polymerization to functionalize the surface of the particles with ATRP initiator groups. The surface‐initiated ATRP of different monomers was then carried out to produce core–shell‐type polymeric nanostructures. This versatile technique can be easily employed for the design of a wide variety of polymeric shells surrounding a crosslinked core while keeping good control over the sizes of the nanostructures. The particles were characterized with scanning electron microscopy, transmission electron microscopy, optical microscopy, dynamic light scattering, and Raman spectroscopy. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1575–1584, 2007  相似文献   

3.
Three controlled/living polymerization processes, namely atom transfer radical polymerization (ATRP), ring‐opening polymerization (ROP) and iniferter polymerization, and photoinduced radical coupling reaction were combined for the preparation of ABCBD‐type H‐shaped complex copolymer. First, α‐benzophenone functional polystyrene (BP‐PS) and poly(methyl methacrylate) (BP‐PMMA) were prepared independently by ATRP. The resulting polymers were irradiated to form ketyl radicals by hydrogen abstraction of the excited benzophenone moieties present at each chain end. Coupling of these radicals resulted in the formation of polystyrene‐b‐poly(methyl methacrylate) (PS‐b‐PMMA) with benzpinacole structure at the junction point possessing both hydroxyl and iniferter functionalities. ROP of ε‐caprolactone (CL) by using PS‐b‐PMMA as bifunctional initiator, in the presence of stannous octoate yielded the corresponding tetrablock copolymer, PCL‐PS‐PMMA‐PCL. Finally, the polymerization of tert‐butyl acrylate (tBA) via iniferter process gave the targeted H‐shaped block copolymer. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4601–4607  相似文献   

4.
Heteroarm H‐shaped terpolymers, (polystyrene)(poly(methyl methacrylate))‐ poly(tert‐butyl acrylate)‐(polystyrene)(poly(methyl methacrylate)), (PS)(PMMA)‐PtBA‐(PMMA)(PS), and, (PS)(PMMA)‐poly(ethylene glycol)(PEG)‐(PMMA)(PS), through click reaction strategy between PS‐PMMA copolymer (as side chains) with an alkyne functional group at the junction point and diazide end‐functionalized PtBA or PEG (as a main chain). PS‐PMMA with alkyne functional group was prepared by sequential living radical polymerizations such as the nitroxide mediated (NMP) and the metal mediated‐living radical polymerization (ATRP) routes. The obtained H‐shaped polymers were characterized by using 1H‐NMR, GPC, DSC, and AFM measurements. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1055–1065, 2007  相似文献   

5.
The ability of 2‐vinyl‐4,4‐dimethyl‐5‐oxazolone (VDM), a highly reactive functional monomer, to produce block copolymers by reversible addition fragmentation chain transfer (RAFT) sequential polymerization with methyl acrylate (MA), styrene (S), and methyl methacrylate (MMA) was investigated using cumyl dithiobenzoate (CDB) and 2‐cyanoisopropyl dithiobenzoate (CPDB) as chain transfer agents. The results show that PS‐b‐PVDM and PMA‐b‐PVDM well‐defined block copolymers can be prepared either by polymerization of VDM from PS‐ and PMA‐macroCTAs, respectively, or polymerization of S and MA from a PVDM‐macroCTA. In contrast, PMMA‐b‐PVDM block copolymers with controlled molecular weight and low polydispersity can only be obtained by using PMMA as the macroCTA. Ab initio calculations confirm the experimental studies. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

6.
A series of polystyrene‐b‐(poly(2‐(2‐bromopropionyloxy) styrene)‐g‐poly(methyl methacrylate)) (PS‐b‐(PBPS‐g‐PMMA)) and polystyrene‐b‐(poly(2‐(2‐bromopropionyloxy)ethyl acrylate)‐g‐poly(methyl methacrylate)) (PS‐b‐(PBPEA‐g‐PMMA)) as new coil‐comb block copolymers (CCBCPs) were synthesized by atom transfer radical polymerization (ATRP). The linear diblock copolymer polystyrene‐b‐poly(4‐acetoxystyrene) and polystyrene‐b‐poly(2‐(trimethylsilyloxy)ethyl acrylate) PS‐b‐P(HEA‐TMS) were obtained by combining ATRP and activators regenerated by electron transfer (ARGET) ATRP. Secondary bromide‐initiating sites for ATRP were introduced by liberation of hydroxyl groups via deprotection and subsequent esterification reaction with 2‐bromopropionyl bromide. Grafting of PMMA onto either the PBPS block or the PBPEA block via ATRP yielded the desired PS‐b‐(PBPS‐g‐PMMA) or PS‐b‐(PBPEA‐g‐PMMA). 1H nuclear magnetic resonance spectroscopy and gel permeation chromatography data indicated the target CCBCPs were successfully synthesized. Preliminary investigation on selected CCBCPs suggests that they can form ordered nanostructures via microphase separation. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2971–2983  相似文献   

7.

A series of polyacrylate‐polystyrene‐polyisobutylene‐polystyrene‐polyacrylate (X‐PS‐PIB‐PS‐X) pentablock terpolymers (X=poly(methyl acrylate) (PMA), poly(butyl acrylate) (PBA), or poly(methyl methacrylate) (PMMA)) was prepared from poly (styrene‐b‐isobutylene‐b‐styrene) (PS‐PIB‐PS) block copolymers (BCPs) using either a Cu(I)Cl/1,1,4,7,7‐pentamethyldiethylenetriamine (PMDETA) or Cu(I)Cl/tris[2‐(dimethylamino)ethyl]amine (Me6TREN) catalyst system. The PS‐PIB‐PS BCPs were prepared by quasiliving carbocationic polymerization of isobutylene using a difunctional initiator, followed by the sequential addition of styrene, and were used as macroinitiators for the atom transfer radical polymerization (ATRP) of methyl acrylate (MA), n‐butyl acrylate (BA), or methyl methacrylate (MMA). The ATRP of MA and BA proceeded in a controlled fashion using either a Cu(I)Cl/PMDETA or Cu(I)Cl/Me6TREN catalyst system, as evidenced by a linear increase in molecular weight with conversion and low PDIs. The polymerization of MMA was less controlled. 1H‐NMR spectroscopy was used to elucidate pentablock copolymer structure and composition. The thermal stabilities of the pentablock copolymers were slightly less than the PS‐PIB‐PS macroinitiators due to the presence of polyacrylate or polymethacrylate outer block segments. DSC analysis of the pentablock copolymers showed a plurality of glass transition temperatures, indicating a phase separated material.  相似文献   

8.
Optically active homopolymers and copolymers, bearing chiral units at the side chain and end chain, were prepared via atom transfer radical polymerization (ATRP) techniques. The well‐defined optically active polymers were obtained via the ATRP of pregnenolone methacrylate (PR‐MA), β‐cholestanol acrylate (CH‐A), and 20‐(hydroxymethyl)‐pregna‐1,4‐dien‐3‐one acrylate (HPD‐A) with ethyl 2‐bromopropionate as the initiator and CuBr/N,N,N′,N″,N″‐pentamethyldiethylenetriamine as the catalytic system. The experimental results showed that the polymerizations of PR‐MA, CH‐A, and HPD‐A proceeded in a living fashion, providing pendent chiral group polymers with low molecular weight distributions and predetermined molecular weights that increased linearly with the monomer conversion. Furthermore, the copolymers poly(pregnenolone methacrylate)‐b‐poly[(dimethylamino)ethyl methacrylate] and poly(pregnenolone methacrylate‐co‐methyl methacrylate) were synthesized and characterized with 1H NMR, transmission electron microscopy, and polarimetric analysis. In addition, when optically active initiators estrone 2‐bromopropionate and 20‐(hydroxymethyl)‐pregna‐1,4‐dien‐3‐one 2‐bromopropionate were used for ATRPs of methyl methacrylate and styrene, terminal optically active poly(methyl methacrylate) and polystyrene were obtained. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1502–1513, 2006  相似文献   

9.
A combination of ring opening metathesis polymerization (ROMP) and click chemistry approach is first time utilized in the preparation of 3‐miktoarm star terpolymer. The bromide end‐functionality of monotelechelic poly(N‐butyl oxanorbornene imide) (PNBONI‐Br) is first transformed to azide and then reacted with polystyrene‐b‐poly(methyl methacrylate) copolymer with alkyne at the junction point (PS‐b‐PMMA‐alkyne) via click chemistry strategy, producing PS‐PMMA‐PNBONI 3‐miktoarm star terpolymer. PNBONI‐Br was prepared by ROMP of N‐butyl oxanorbornene imide (NBONI) 1 in the presence of (Z)‐but‐2‐ene‐1,4‐diyl bis(2‐bromopropanoate) 2 as terminating agent. PS‐b‐PMMA‐alkyne copolymer was prepared successively via nitroxide‐mediated radical polymerization (NMP) of St and atom transfer radical polymerization (ATRP) of MMA. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 497–504, 2009  相似文献   

10.
A detailed exploration of the atom transfer radical polymerization (ATRP) of a sugar‐carrying monomer, 6‐O‐methacryloyl‐1,2;3,4‐di‐O‐isopropylidene‐D‐galactopyranose (MAIPGal) was performed. The factors pertinent to ATRP, such as initiators, ligands, catalysts, and temperature were optimized to obtain good control over the polymerization. The kinetics were examined in detail when the polymerization was initiated by methyl 2‐bromoisopropionate (2‐MBP), ethyl 2‐bromoisobutyrate (2‐EBiB), or a macroinitiator, [α‐(2‐bromoisobutyrylate)‐ω‐methyl PEO] (PEO–Br), with bipyridine (bipy) as the ligand at 60 °C or by 2‐EiBB with N,N,N′,N″,N″‐pentamethyldiethylenetriamine (PMDETA) as the ligand at room temperature (23 °C). The effects of the catalysts (CuBr and CuCl) were also investigated. We demonstrate that the successful ATRP of MAIPGal can be achieved for 2‐EBiB/CuBr/bipy and 2‐MBP/CuCl/bipy at 60 °C and for 2‐EBiB/CuBr/PMDETA at room temperature. The initiation by 2‐EBiB at room temperature with PMDETA as the ligand should be the most optimum operation for its moderate condition and suppression of many side reactions. Chain extension of P(MAIPGal) prepared by ATRP with methyl methacrylate (MMA) as the second monomer was carried out and a diblock copolymer, P(MAIPGal)‐b‐PMMA, was obtained. Functional polymers, poly(D‐galactose 6‐methacrylate) (PGMA), PEO‐b‐PGMA, and PGMA‐b‐PMMA were obtained after removal of the protecting groups. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 752–762, 2005  相似文献   

11.
In this work, the poly(methyl methacrylate‐co‐methacrylic acid)/poly(methacrylic acid‐co‐N‐isopropylacrylamide) thermosensitive composite semi‐hollow latex particles was synthesized by three processes. The first process was to synthesize the poly(methyl methacrylate‐co‐methacrylic acid) (poly (MMA‐MAA)) copolymer latex particles by the method of soapless emulsion polymerization. The second process was to polymerize methacrylic acid (MAA), N‐isopropylacrylamide (NIPAAm), and crosslinking agent, N,N′‐methylenebisacrylamide, in the presence of poly(MMA‐MAA) latex particles to form the linear poly(methyl methacrylate‐co‐methacrylic acid)/crosslinking poly(methacrylic acid‐co‐N‐isopropylacrylamide) (poly(MMA‐MAA)/poly(MAA‐NIPAAm)) core–shell latex particles with solid structure. In the third process, part of the linear poly(MMA‐MAA) core of core–shell latex particles was dissolved by ammonia to form the poly(MMA‐MAA)/poly(MAA‐NIPAAm) thermosensitive semi‐hollow latex particles. The morphologies of the semi‐hollow latex particles show that there is a hollow zone between the linear poly(MMA‐MAA) core and the crosslinked poly(MAA‐NIPAAm) shell. The crosslinking agent and shell composition significantly influenced the lower critical solution temperature of poly(MMA‐MAA)/poly(MAA‐NIPAAm) semi‐hollow latex particles. Besides, the poly(MMA‐MAA)/poly(MAA‐NIPAAm) thermosensitive semi‐hollow latex particles were used as carriers to load with the model drug, caffeine. The processes of caffeine loaded into the semi‐hollow latex particles appeared four situations, which was different from that of solid latex particles. In addition, the phenomenon of caffeine released from the semi‐hollow latex particles was obviously different from that of solid latex particles. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3441–3451  相似文献   

12.
Novel bifunctional initiators [1,1′‐Bi‐2‐naphthol bis(2‐bromo‐2‐methylpropionate); (R)‐, (S)‐, and racemic‐] were synthesized from the esterification of 1,1′‐bi‐2‐naphthol and used as initiators in atom transfer radical polymerization (ATRP) in conjunction with N,N,N′,N′,N″‐pentamethyldiethylenetriamine (PMDETA), and copper (I) bromide or copper (I) chloride. The initiators synthesized were completely characterized by UV, FTIR, NMR, and Mass spectroscopies. A detailed investigation of the ATRP of methyl methacrylate (MMA) with the bifunctional initiators (BBiBN) along with CuBr or CuCl/PMDETA catalyst system in anisole was carried out at 30 °C. Thus, MMA polymerization is shown to proceed with first‐order kinetics, with predicted molecular weight, and narrow polydispersity indices. The ATRP of glycidyl methacrylate (GMA) and tert‐butyl acrylate (tBA) were also performed with BBiBN initiator in conjunction with CuBr/PMDETA catalyst system. The polymerization of GMA was carried out at 30 °C, but tBA was polymerized at 60 °C. Gel permeation chromatography (GPC), FTIR, NMR, UV spectroscopies, and TGA were used for the characterization of the polymers synthesized. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 902–915, 2004  相似文献   

13.
H‐shaped quintopolymer containing different five blocks: poly(ε‐caprolactone) (PCL), polystyrene (PS), poly(ethylene glycol) (PEG), and poly(methyl methacrylate) (PMMA) as side chains and poly(tert‐butyl acrylate) (PtBA) as a main chain was simply prepared from a click reaction between azide end‐functionalized PCL‐PS‐PtBA 3‐miktoarm star terpolymer and PEG–PMMA‐block copolymer with alkyne at the junction point, using Cu(I)/N,N,N′,N″,N″‐pentamethyldiethylenetriamine (PMDETA) as a catalyst in DMF at room temperature for 20 h. The H‐shaped quintopolymer was obtained with a number–average molecular weight (Mn) around 32,000 and low polydispersity index (Mw/Mn) 1.20 as determined by GPC analysis in THF using PS standards. The click reaction efficiency was calculated to have 60% from 1H NMR spectroscopy. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4459–4468, 2008  相似文献   

14.
The amphiphilic heterograft copolymers poly(methyl methacrylate‐co‐2‐(2‐bromoisobutyryloxy)ethyl methacrylate)‐graft‐(poly(acrylic acid)/polystyrene) (P(MMA‐co‐BIEM)‐g‐(PAA/PS)) were synthesized successfully by the combination of single electron transfer‐living radical polymerization (SET‐LRP), single electron transfer‐nitroxide radical coupling (SET‐NRC), atom transfer radical polymerization (ATRP), and nitroxide‐mediated polymerization (NMP) via the “grafting from” approach. First, the linear polymer backbones poly(methyl methacrylate‐co‐2‐(2‐bromoisobutyryloxy)ethyl methacrylate) (P(MMA‐co‐BIEM)) were prepared by ATRP of methyl methacrylate (MMA) and 2‐hydroxyethyl methacrylate (HEMA) and subsequent esterification of the hydroxyl groups of the HEMA units with 2‐bromoisobutyryl bromide. Then the graft copolymers poly(methyl methacrylate‐co‐2‐(2‐bromoisobutyryloxy)ethyl methacrylate)‐graft‐poly(t‐butyl acrylate) (P(MMA‐co‐BIEM)‐g‐PtBA) were prepared by SET‐LRP of t‐butyl acrylate (tBA) at room temperature in the presence of 2,2,6,6‐tetramethylpiperidin‐1‐yloxyl (TEMPO), where the capping efficiency of TEMPO was so high that nearly every TEMPO trapped one polymer radicals formed by SET. Finally, the formed alkoxyamines via SET‐NRC in the main chain were used to initiate NMP of styrene and following selectively cleavage of t‐butyl esters of the PtBA side chains afforded the amphiphilic heterograft copolymers poly(methyl methacrylate‐co‐2‐(2‐bromoisobutyryloxy)ethyl methacrylate)‐graft‐(poly(t‐butyl acrylate)/polystyrene) (P(MMA‐co–BIEM)‐g‐(PtBA/PS)). The self‐assembly behaviors of the amphiphilic heterograft copolymers P(MMA‐co–BIEM)‐g‐(PAA/PS) in aqueous solution were investigated by AFM and DLS, and the results demonstrated that the morphologies of the formed micelles were dependent on the grafting density. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

15.
Based on hyperbranched polyglycerol (PG), a route to prepare particles with a novel topology was developed. The hydroxyls of PG were converted to trithiocarbonates, and the latter were used to mediate the surface graft polymerization of N,N‐dimethylaminoethyl acrylate. The poly(N,N‐dimethylaminoethyl acrylate) shell was crosslinked by 1,6‐dibromohexane and then parted from the core by the cleavage of trithiocarbonates with sodium borohydride. Novel particles with thiol groups located on the interface between the PG core and poly(N,N‐dimethylaminoethyl acrylate) shell were thus formed. The shell crosslinking could be performed at very high solid contents (2–4%). These polymer particles showed pH‐ and temperature‐dependent solubility. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5458–5464, 2005  相似文献   

16.
Submicron-sized peanut-shaped poly(methyl methacrylate)/polystyrene(PMMA/PS) particles were successfully synthesized by seeded soap-free emulsion polymerization of styrene on the spherical crosslinked PMMA seed particles.The obtained peanut-shaped particles showed a novel internal morphology:PS phase formed one domain which linked to the other domain having PMMA core encased by PS shell.  相似文献   

17.
Through reversible addition‐fragmentation chain transfer (RAFT) polymerization of t‐butyl acrylate (tBA) and RAFT copolymerization of 2‐dimethylaminoethyl methacrylate (DMAEMA) with poly(ethylene glycol) methyl ether methacrylate (PEGMEMA), block‐comb copolymer of PtBA‐b‐P(PEGMEMA‐co‐DMAEMA) was prepared. After the self‐assembly of PtBA‐b‐P(PEGMEMA‐co‐DMAEMA) into core‐shell spherical micelles, P(PEGMEMA‐co‐DMAEMA) segments of the shell was crosslinked with 1,2‐bis(2‐iodoethoxy)ethane and the core of PtBA was selectively hydrolysized with trifluoroacetic acid. Thus, zwitterionic shell‐crosslinked micelles with positively charged outer shell and negatively charged inner core were obtained. Dynamic light scattering, transmission electron microscope, Zeta potential measurement, and nuclear magnetic resonance were used to confirm the formation of the zwitterionic shell‐crosslinked micelles. They showed the excellent resistance to the variation of pH value and possessed the positive values throughout the whole range of pH range even if the carboxylic groups of the micelles was much more than ammonium groups. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

18.
Copolymerization of acrylonitrile (AN) and ethyl methacrylate (EMA) using copper‐based atom transfer radical polymerization (ATRP) at ambient temperature (30 °C) using various initiators has been investigated with the aim of achieving control over molecular weight distribution. The effect of variation of concentration of the initiator, ligand, catalyst, and temperature on the molecular weight distribution and kinetics were investigated. No polymerization at ambient temperature was observed with N,N,N′,N′,N″‐pentamethyldiethylenetriamine (PMDETA) ligand. The rate of polymerization exhibited 0.86 order dependence with respect to 2‐bromopropionitrile (BPN) initiator. The first‐order kinetics was observed using BPN as initiator, while curvature in first‐order kinetic plot was obtained for ethyl 2‐bromoisobutyrate (EBiB) and methyl 2‐bromopropionate (MBP), indicating that termination was taking place. Successful polymerization was also achieved with catalyst concentrations of 25 and 10% relative to initiator without loss of control over polymerization. The optimum [bpy]0/[CuBr]0 molar ratio for the copolymerization of AN and EMA through ATRP was found to be 3/1. For three different in‐feed ratios, the variation of copolymer composition (FAN) with conversion indicated toward the synthesis of copolymers having slight changes in composition with conversion. The high chain‐end functionality of the synthesized AN‐EMA copolymers was verified by further chain extension with methyl acrylate and styrene. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1975–1984, 2006  相似文献   

19.
Polymer–silicate nanocomposites were synthesized with atom transfer radical polymerization (ATRP). An ATRP initiator, consisting of a quaternary ammonium salt moiety and a 2‐bromo‐2‐methyl propionate moiety, was intercalated into the interlayer spacings of the layered silicate. Subsequent ATRP of styrene, methyl methacrylate, or n‐butyl acrylate with Cu(I)X/N,N‐bis(2‐pyridiylmethyl) octadecylamine, Cu(I)X/N,N,N,N,N″‐pentamethyldiethylenetriamine, or Cu(I)X/1,1,4,7,10,10‐hexamethyltriethylenetetramine (X = Br or Cl) catalysts with the initiator‐modified silicate afforded homopolymers with predictable molecular weights and low polydispersities, both characteristics of living radical polymerization. The polystyrene nanocomposites contained both intercalated and exfoliated silicate structures, whereas the poly(methyl methacrylate) nanocomposites were significantly exfoliated. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 916–924, 2004  相似文献   

20.
Copper(0)‐catalyzed one‐pot reaction combining living radical polymerization and “click chemistry” was investigated. By precisely tuning reaction time, three novel well‐defined polymers with different degree of carboxyl substitution, poly(propargyl methacrylate) (PPgMA), poly(1‐(4‐carboxyphenyl)‐[1,2,3]triazol‐4‐methyl methacrylate) (PCTMMA), and poly(1‐(4‐carboxyphenyl)‐[1,2,3]triazol‐4‐methyl methacrylate‐co‐propargyl methacrylate) (PCTMMA‐co‐PPgMA) were selectively obtained via Cu(0) powder/N,N,N′,N″,N″‐pentamethyldiethylenetriamine (PMDETA) cocatalyzed LRP and click chemistry. In addition, gel permeation chromatography and 1H NMR analysis in conjunction with FTIR spectroscopy elucidate that one‐pot process undergoes three steps due to a pronounced rate enhancement of click reaction: (1) generating new monomer, 1‐(4‐carboxyphenyl)‐[1,2,3]triazol‐4‐methyl methacrylate (CTMMA); (2) copolymerization of two monomers (CTMMA and PgMA); (3) building homopolymer PCTMMA. Surprisingly, in contrast to typical Cu(I)‐catalyzed atom transfer radical polymerization (ATRP), copper(0)‐catalyzed one‐pot reaction showed high carboxylic acid group tolerance. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号