首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Li F  Li S  Vert M 《Macromolecular bioscience》2005,5(11):1125-1131
Ring-opening polymerization of D,L-lactide was carried out in the presence of poly(ethylene glycol), using Zn powder as catalyst. The hydroxyl-capped PLA-PEG-PLA triblock copolymers were coupled with adipoyl chloride at different molar ratios under mild conditions. N-Dimethylaminopyridine (DMAP) was used as catalyst of the coupling reaction. The resulting PLA/PEG multiblock copolymers were characterized by various analytical techniques such as IR, 1H NMR, SEC, and DSC. Sol-gel transition properties of the multiblock copolymers were investigated by mechanical rheology. The data showed that the sol-gel transition temperature and the transition modulus increased with increasing molecular weight and the solution concentration of the multiblock copolymers. [Graph: see text] Variation of storage modulus (G') and loss modulus (G') as a function of temperature for a 20% sample of MB3.  相似文献   

2.
Amphiphilic triblock copolymers, poly(ethyl cyanoacrylate)‐b‐poly(ethylene glycol)‐b‐poly(ethyl cyanoacrylate) (PECA‐b‐PEG‐b‐PECA), were synthesized via oxyanion‐initiated polymerization with sodium alcoholate‐terminated PEG as macroinitiator. PECA‐b‐PEG‐b‐PECA were characterized by gel permeation chromatography system, 1H NMR and FTIR. The results indicate that the copolymerization is well controlled with narrow molecular weight distribution. The dexamethasone (DXM)‐loaded PECA‐b‐PEG‐b‐PECA nanoparticles (NPs) were prepared by nanoprecipitation technique and then characterized by Laser Particle Size Analyzer, 1H NMR and transmission electron microscopy. The drug‐loaded PECA‐b‐PEG‐b‐PECA NPs are of spherical shape with average size of less than 100 nm. The drug‐loaded amount (DLA) and encapsulation efficiency of DLNPs were investigated by HPLC. The results show that DXM can be effectively incorporated into PECA‐b‐PEG‐b‐PECA NPs, which provides an optional delivery system for DXM and other hydrophobic drugs. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7809–7815, 2008  相似文献   

3.
New biodegradable/biocompatible ABC block copolymers, poly(ethylene oxide)‐b‐poly(glycidol)‐b‐poly(L ,L ‐lactide) (PEO‐PGly‐PLLA), were synthesized. First, PEO‐b‐poly(1‐ethoxyethylglycidol)‐b‐PLLA was synthesized by a successive anionic ring‐opening copolymerization of ethylene oxide, 1‐ethoxyethylglycidyl ether, and L ,L ‐lactide initiated with potassium 2‐methoxyethanolate. In the second step, the 1‐ethoxyethyl blocking groups of 1‐ethoxyethylglycidyl ether were removed at weakly acidic conditions leaving other blocks intact. The resulting copolymers were composed of hydrophilic and hydrophobic segments joined by short polyglycidol blocks with one hydroxyl group in each monomeric unit. These hydroxyl groups may be used for further copolymer transformations. The PEO‐PGly‐PLLA copolymers with a molecular weight of PLLA blocks below 5000 were water‐soluble. Above the critical micellar concentration (ranging from 0.05 to1.0 g/L, depending on the composition of copolymer), copolymers formed macromolecular micelles with a hydrophobic PLLA core and hydrophilic PEO shell. The diameters of the micelles were about 25 nm. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3750–3760, 2003  相似文献   

4.
Well‐defined diblock and triblock copolymers composed of poly(N‐isopropylacrylamide) (PNIPAM) and poly(ethylene oxide) (PEO) were successfully synthesized through the reversible addition–fragmentation chain transfer polymerization of N‐isopropylacrylamide (NIPAM) with PEO capped with one or two dithiobenzoyl groups as a macrotransfer agent. 1H NMR, Fourier transform infrared, and gel permeation chromatography instruments were used to characterize the block copolymers obtained. The results showed that the diblock and triblock copolymers had well‐defined structures and narrow molecular weight distributions (weight‐average molecular weight/number‐average molecular weight < 1.2), and the molecular weight of the PNIPAM block in the diblock and triblock copolymers could be controlled by the initial molar ratio of NIPAM to dithiobenzoate‐terminated PEO and the NIPAM conversion. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4873–4881, 2004  相似文献   

5.
A series of graft copolymers were synthesized based on ethylene‐co‐m,p‐methylstyrene (EMS) (backbone copolymer), ethylene‐1‐hexene‐m,p‐methylstyrene (EHMS) (backbone terpolymer), and polyethylene glycol monomethyl ethers (PEGM) (grafts) in this study. The PEGMs with molecular weights of 750 and 2000 were used. The chemical composition of the graft copolymers was analyzed by NMR and DSC measurements. The graft copolymers exhibited a phase‐separated morphology with the backbone and the methoxy polyethylene glycol (MPEG) grafts forming separate crystalline phases. The MPEG phase had a melting temperature lower than the corresponding MPEG homopolymer, as determined by DSC. The melting point of the crystalline phase formed by the EMS and EHMS main chains was lower than that of pure polymer backbone. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
Polyester–polyether block copolymers based on polycaprolactone/poly(ethylene glycol)/polylactide (PCEL) with various compositions were synthesized by direct copolymerization of ϵ‐caprolactone, L ‐lactide and PEG (6000) in the presence of stannous octoate at 130 °C for 56 hr. The degradation behavior of the copolymers was investigated in a pH 7.4 phosphate buffer solution at 37 ±1 °C. Various techniques such as weight, gel permeation chromatography, 1H nuclear magnetic resonance, differential scanning calorimetry and X‐ray diffractometry were used to monitor the changes in water absorption, weight loss, molar mass, molar mass distribution, thermal properties and compositions. The results show that the hydrophilicity of copolymer was enhanced with increasing poly(ethylene oxide) content, which led to the PEG sequences fast release and an increase in weight loss of the copolymer. Bimodal chromatograms were detected in the degradation, which were attributed to the degradation mechanism of the partial crystalline polymer proceeding predominantly in amorphous zones. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

7.
A series of amphiphilic triblock copolymers, methoxy poly(ethylene glycol)‐b‐poly(octadecanoic anhydride)‐b‐methoxy poly(ethylene glycol) (mPEG‐b‐POA‐b‐mPEG), were prepared via melt polycondensation of methoxy poly(ethylene glycol) (mPEG) and poly(octadecanoic anhydride) (POA). mPEG‐b‐POA‐b‐mPEG were characterized by FTIR, 1H‐NMR, GPC, DSC, and XRD. Drug‐loaded mPEG‐b‐POA‐b‐mPEG nanoparticles (NPs) with spherical morphology and narrow size polydispersity index were prepared by nanoprecipitation technique with paclitaxel as the model drug. In vitro release behaviors of drug‐loaded NPs present that the biphasic process and the release mechanism of each phase are zero order drug releases. According to this study, mPEG‐b‐POA‐b‐mPEG NPs could serve as suitable delivery agents for paclitaxel and other hydrophobic drugs. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
Segmented block copolymers based on poly(ethylene oxide) (PEO) flexible segments and monodisperse crystallizable bisester tetra‐amide segments were made via a polycondensation reaction. The molecular weight of the PEO segments varied from 600 to 4600 g/mol and a bisester tetra‐amide segment (T6T6T) based on dimethyl terephthalate (T) and hexamethylenediamine (6) was used. The resulting copolymers were melt‐processable and transparent. The crystallinity of the copolymers was investigated by differential scanning calorimetry (DSC) and Fourier Transform infrared (FTIR). The thermal properties were studied by DSC, temperature modulated synchrotron small angle X‐ray scattering (SAXS), and dynamic mechanical analysis (DMA). The elastic properties were evaluated by compression set (CS) test. The crystallinity of the T6T6T segments in the copolymers was high (>84%) and the crystallization fast due to the use of monodisperse tetra‐amide segments. DMA experiments showed that the materials had a low Tg, a broad and almost temperature independent rubbery plateau and a sharp flow temperature. With increasing PEO length both the PEO melting temperature and the PEO crystallinity increased. When the PEO segment length was longer than 2000 g/mol the PEO melting temperature was above room temperature and this resulted in a higher modulus and in higher compression set values at room temperature. The properties of PEO‐T6T6T copolymers were compared with similar poly(propylene oxide) and poly(tetramethylene oxide) copolymers. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4522–4535, 2007  相似文献   

9.
A well‐defined linear ABC triblock copolymer of ethylene oxide (EO), methyl methacrylate (MMA), and styrene (St) was prepared by sequential living anionic and photo‐induced charge transfer polymerization (CTP) using p‐aminophenol as parent compound. In the first step, the diblock copolymer of PEO‐b‐PMMA with a protected aniline end group at PEO end was prepared by initiating of phenoxo‐anion the polymerization of EO and MMA successively, then the diblock copolymer of PEO‐b‐PMMA via deprotection of aniline at PEO end constituted a binary initiation system with benzophenone (BP) by charge transfer complex mechanism to initiate the polymerization of St under UV‐irradiation. The GPC and NMR measurements support that in copolymerization, either in the first or second step, neither homopolymer nor side reactions, such as chain transfer or chain termination, was found. The effect of the concentration of PEOab‐PMMA and St, and the polarity of solvent on the polymerization rate (Rp) of CTP is discussed. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 825–833, 1999  相似文献   

10.
Water‐soluble and photoluminescent block copolymers [poly(ethylene oxide)‐block‐poly(p‐phenylene vinylene) (PEO‐b‐PPV)] were synthesized, in two steps, by the addition of α‐halo‐α′‐alkylsulfinyl‐p‐xylene from activated poly(ethylene oxide) (PEO) chains in tetrahydrofuran at 25 °C. This copolymerization, which was derived from the Vanderzande poly(p‐phenylene vinylene) (PPV) synthesis, led to partly converted PEO‐b‐PPV block copolymers mixed with unreacted PEO chains. The yield, length, and composition of these added sequences depended on the experimental conditions, namely, the order of reagent addition, the nature of the monomers, and the addition of an extra base. The addition of lithium tert‐butoxide increased the length of the PPV precursor sequence and reduced spontaneous conversion. The conversion into PPV could be achieved in a second step by a thermal treatment. A spectral analysis of the reactive medium and the composition of the resulting polymers revealed new evidence for an anionic mechanism of the copolymerization process under our experimental conditions. Moreover, the photoluminescence yields were strongly dependant on the conjugation length and on the solvent, with a maximum (70%) in tetrahydrofuran and a minimum (<1%) in water. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4337–4350, 2005  相似文献   

11.
A universally significant method,which combines the anionic polymerization with photoinduced charge transfer polymerization,for preparation of soluble star ABC triblock copolymer of ethylene oxide,styrene and methyl methacrylate,was described.The poly(ethylene oxide) (PEO) block was formed by initiation of phenoxy an-ions using p-aminophenol protected by Schiff's base as the parent compound Then the charge transfer system composed of PEO chains with deprotected-amino end groups and benzophenone initiated the polymerization of styrene and methyl metnacrylate sequentially under UV irradiation.The formed star triblock copolymer of styrene,ethylene oxide and methyl methacrylate could be purified by thin-layer chromatography (TLC) and characterized by IR,1H NMR,GPC (gel permeation chromatogrphy) and PGC (pyrolysis gas chromatography).  相似文献   

12.
Poly(ethylene oxide)-b-poly(L-lactic acid) (PEO-PLLA) diblock copolymers were synthesized via a ring opening polymerization from poly(ethylene oxide) and l -lactide. Stannous octoate was used as a catalyst in a solution polymerization with toluene as the solvent. Their physicochemical properties were investigated by using infrared spectroscopy, 1H-NMR spectroscopy, gel permeation chromatography, and differential scanning calorimetry, as well as the observational data of gel-sol transitions in aqueous solutions. Aqueous solutions of PEO-PLLA diblock copolymers changed from a gel phase to a sol phase with increasing temperature when their polymer concentrations are above a critical gel concentration. As the PLLA block length increased, the gel-sol transition temperature increased. For comparison, diblock copolymers of poly(ethylene oxide)-b-poly(l -lactic acid-co-glycolic acid) [PEO-P(LLA/GA)] and poly(ethylene oxide)-b-poly(dl -lactic acid-co-glycolic acid) [PEO-P(DLLA/GA)] were synthesized by the same methods, and their gel-sol transition behaviors were also investigated. The gel-sol transition properties of these diblock copolymers are influenced by the hydrophilic/hydrophobic balance of the copolymer, block length, hydrophobicity, and stereoregularity of the hydrophobic block of the copolymer. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2207–2218, 1999  相似文献   

13.
以原子转移自由基偶联法合成了多臂星形聚合物S-PEO和星形杂臂共聚物PEO-PS。以傅立叶红外光谱(FT-IR)和核磁共振(1H NMR)分析方法确定了产物的结构。以GPC分析测试了产物的分子量和分子量分布。GPC分析结果表明所得聚合物分子量增大,分子量分布窄,偶联反应效率可高达99%以上。  相似文献   

14.
Novel polyisophthalamides containing pendent poly(ethylene oxide) (PEO) sequences were prepared by grafting PEO onto poly(5‐hydroxy‐isophthalamide)s (HO‐PIPAs). First, an optimized method of synthesis was applied to prepare HO‐PIPAs, following the rules of the direct polyamidation reaction promoted by triphenyl phosphite and catalyzed by pyridine. Next, the modification of HO‐PIPAs was performed by a nucleophilic substitution reaction with chlorine‐terminated PEO monomethyl ether of average molecular weight 100, 550, and 1000 g/mol. The modification (grafting) reaction was optimized to assure virtually 100% yield. Polymers behaved as graft or brush‐like copolymers of polyisophthalamide (PIPA) and PEO, covering a wide range of ratios of PIPA/PEO. Physical properties, such as solubility, glass transition temperature, and thermal resistance were determined. Special attention was paid to the affinity of the novel copolymers for water. It was realized that with a high content of PEO, the materials could absorb water in amounts exceeding their own weight. Gravimetric methods and water contact angle measurements were used to quantify the hydrophilicity of the current PIPA‐g‐PEO copolymers. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

15.
This article discusses an effective route to prepare amphiphilic diblock copolymers containing a poly(ethylene oxide) block and a polyolefin block that includes semicrystalline thermoplastics, such as polyethylene and syndiotactic polystyrene (s‐PS), and elastomers, such as poly(ethylene‐co‐1‐octene) and poly(ethylene‐co‐styrene) random copolymers. The broad choice of polyolefin blocks provides the amphiphilic copolymers with a wide range of thermal properties from high melting temperature ~270 °C to low glass‐transition temperature ~?60 °C. The chemistry involves two reaction steps, including the preparation of a borane group‐terminated polyolefin by the combination of a metallocene catalyst and a borane chain‐transfer agent as well as the interconversion of a borane terminal group to an anionic (? O?K+) terminal group for the subsequent ring‐opening polymerization of ethylene oxide. The overall reaction process resembles a transformation from the metallocene polymerization of α‐olefins to the ring‐opening polymerization of ethylene oxide. The well‐defined reaction mechanisms in both steps provide the diblock copolymer with controlled molecular structure in terms of composition, molecular weight, moderate molecular weight distribution (Mw/Mn < 2.5), and absence of homopolymer. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3416–3425, 2002  相似文献   

16.
Anionic graft copolymers were synthesized through grafting of poly(ethylene glycol) monomethyl ether (MPEG) onto terpolymers containing succicinic anhydride groups. The backbone polymers were prepared through radical terpolymerization of maleic anhydride, styrene, and one of the following monomers: methyl methacrylate, ethylhexyl methacrylate, and diethyl fumarate. MPEG of different molecular weights were grafted onto the backbone through reactions with the cyclic anhydride groups. In this reaction one carboxylic acid group is formed together with each ester bond. The molecular weights of MPEG were found to influence the rate of the grafting reaction and the final degree of conversion. The graft copolymers were characterized by IR, GPC, and 1H-NMR. Thermal properties were examined by DSC. Graft copolymers containing 50% w/w of MPEG 2000 grafts were found to be almost completely amorphous, presumably because of crosslinking, and hydrogen bonding between carboxylic acid groups in the backbone and the ether oxygens in MPEG grafts. © 1995 John Wiley & Sons, Inc.  相似文献   

17.
Bis-hydroxyl-terminated poly(1,2-propylene succinate) (PPS-diols) with high molecular weight (10–40 kDa) are prepared by two-step melt polycondensation of succinic acid and 1,2-propanediol with Ti(BuO)4 as the catalyst. By using these PPS-diols as macroinitiators, the ring-opening polymerization of d - and l -lactides is readily conducted to obtain enantiomeric ABA triblock copolymers consisting of poly(l -lactide) and PPS (B) (t-l -PPS) as well as those of poly(d -lactide) and PPS (B) (t-d -PPS) which have higher PPS compositions (20–70 wt%) in addition to high molecular weight (20–80 kD). The Tg, Tm, and ΔHm values of the t-l -PPS copolymers as well as the stereo mixtures of t-l -PPS/t-d -PPS are controlled to linearly decrease with increasing the PPS content. The copolymers also exhibit higher elastomeric properties with increasing the PPS content. The tensile properties of the copolymer films having higher PPS contents (both the single block copolymers and stereo mixtures) are comparable to those of the oil-based thermoplastic elastomers. It is therefore concluded that these block copolymers can afford thermoplastic elastomers or flexible plastic materials having a 100% biobased content.  相似文献   

18.
Amphiphilic triblock copolymers of poly(methyl methacrylate)-b-poly(ethylene oxide)-b-poly(methyl methacrylate) (PMMA-b-PEO-b-PMMA) with well-defined structure were synthesized via atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) initiated by the PEO macroinitiator. The macroinitiator and triblock copolymer with different PMMA and/or PEO block lengths were characterized with 1H and 13C NMR and gel permeation chromatography (GPC). The micelle formed by these triblock copolymers in aqueous solutions was detected by fluorescence excitation and emission spectra of pyrene probe. The critical micelle concentration (CMC) ranged from 0.0019 to 0.016 mg/mL and increased with increasing PMMA block length, while the PEO block length had less effect on the CMC. The partition constant Kv for pyrene in the micelle and in aqueous solution was about 105. The triblock copolymer appeared to form the micelles with hydrophobic PMMA core and hydrophilic PEO loop chain corona. The hydrodynamic radius Rh,app of the micelle measured with dynamic light scattering (DLS) ranged from 17.3 to 24.0 nm and increased with increasing PEO block length to form thicker corona. The spherical shape of the micelle of the triblock copolymers was observed with an atomic force microscope (AFM). Increasing hydrophobic PMMA block length effectively promoted the micelle formation in aqueous solutions, but the micelles were stable even only with short PMMA blocks.  相似文献   

19.
ABA‐type amphiphilic tri‐block copolymers were successfully synthesized from poly(ethylene oxide) derivatives through anionic polymerization. When poly(styrene) anions were reacted with telechelic bromine‐terminated poly(ethylene oxide) ( 1 ) in 2:1 mole ratio, poly(styrene)‐b‐poly(ethylene oxide)‐b‐poly(styrene) tri‐block copolymers were formed. Similarly, stable telechelic carbanion‐terminated poly(ethylene oxide), prepared from 1,1‐diphenylethylene‐terminated poly (ethylene oxide) ( 2 ) and sec‐BuLi, was also used to polymerize styrene and methyl methacrylate separately, as a result, poly (styrene)‐b‐poly(ethylene oxide)‐b‐poly(styrene) and poly (methyl methacrylate)‐b‐poly(ethylene oxide)‐b‐poly(methyl methacrylate) tri‐block copolymers were formed respectively. All these tri‐block copolymers and poly(ethylene oxide) derivatives, 1 and 2 , were characterized by spectroscopic, calorimetric, and chromatographic techniques. Theoretical molecular weights of the tri‐block copolymers were found to be similar to the experimental molecular weights, and narrow polydispersity index was observed for all the tri‐block copolymers. Differential scanning calorimetric studies confirmed the presence of glass transition temperatures of poly(ethylene oxide), poly(styrene), and poly(methyl methacrylate) blocks in the tri‐block copolymers. Poly(styrene)‐b‐poly(ethylene oxide)‐b‐poly(styrene) tri‐block copolymers, prepared from polystyryl anion and 1 , were successfully used to prepare micelles, and according to the transmission electron microscopy and dynamic light scattering results, the micelles were spherical in shape with mean average diameter of 106 ± 5 nm. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

20.
The effect of crystallization of a hydrophobic poly(lactide) block on the self-organization of biocompatible and biodegradable amphiphilic poly(lactide)-block-poly(ethylene oxide) (PLA-b-PEO) copolymers in a dilute aqueous solution has been investigated. It was demonstrated that the co-crystallization of poly(L,L-lactide) [P(L,L)LA] and poly(d,d-lactide) [P(d,d)LA] chains under equimolar mixing of P(L,L)LA46-b-PEO113 and P(d,d)LA56-b-PEO113 copolymers resulted in the formation of stable and spontaneously water-redispersible stereocomplex micelles with semicrystalline P(L,L)LA/P(d,d)LA cores. It was shown that the P(L,L)LA46 / P(d,d)LA56-b-PEO113 stereo-complex micelles produced by dialysis can be potential vehicles for the anticancer agent oxaliplatin  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号