首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several benzophenone‐ and thioxanthone‐based photosensitizers (PSs) were covalently bonded to hydroxyalkylphenone‐ and aminoalkylphenone‐based photoinitiators (PIs) to enhance the rate of the excitation‐transfer effect due to the close vicinity of the PS to the PI. The properties of these new systems were investigated with UV spectroscopy and photo‐differential scanning calorimetry. Broadband irradiation experiments and selective excitation of the PS were carried out for the physical mixtures and covalently bonded PI/PS combinations to investigate the effect of excitation transfer. Selective excitation of the PS chromophore revealed that the energy transfer was significantly increased in covalently bonded initiators in comparison with the physical mixtures. This effect was most pronounced for the hydroxyalkylphenones that were sensitized by suitable benzophenone derivatives, especially at low PI concentrations. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2285–2301, 2004  相似文献   

2.
Camphorquinone (CQ), a widely used photoinitiator (PI) in dental applications, was covalently bonded to aromatic amines to enhance the rate of electron and proton transfer effect due to the close vicinity of the diketone and the amine group. 10‐bromocamphorquinone and 10‐bromomethylcamphorquinone were selected as suitable precursors for esterification with the carboxyl group containing aromatic amines based on 4‐dimethylaminobenzoic acid. Properties of the new photoinitiating systems were investigated by UV spectroscopy and differential scanning photocalorimetry in lauryl acrylate. Compared to physical mixtures, in all cases similar or even better performance was obtained. Surprisingly, 10‐acetyl derivatives 7 – 9 and 18 especially, were found to be highly reactive. Compared to CQ/ethyl 4‐dimethylaminobenzoate, the rate of photopolymerization was increased by a factor of up to 2. Intramolecular reaction was confirmed by photo‐differential scanning calorimetry experiments with varying PI concentrations. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4948–4963, 2004  相似文献   

3.
A series of new water-soluble photoinitiators (PIs) for UV curing of water-borne systems was synthesized by covalent bonding of carbohydrate residues such as D-glucose, sucrose, maltose, 1-amino-D-sorbitol and D-gluconicacid-δ-lactone to the commercially available PI 2-hydroxy-1-[4-(2-hydroxy-ethoxy)phenyl]-2-methylpropan-1-one (Darocur 2959) ( 1 ). In addition, new functional derivatives of 1 containing tosyl- or chloride residues as well as primary or secondary amino groups were prepared. Preliminary photocalorimetric tests of the activity demonstrated excellent efficiencies of the PIs in a commercial water-based acrylate formulation exceeding the photoactivity of the reference PI ( 1 ) substantially. © 1995 John Wiley & Sons, Inc.  相似文献   

4.
Intrigued by the good performance of 1,5‐diphenylpenta‐1,4‐diyn‐3‐one ( DPD ) as photoinitiator for radical polymerization we prepared and investigated several donor substituted derivatives. UV‐Vis spectroscopy revealed a gradual red‐shift of λmax and higher extinction in the order of the donor capability. A methoxy‐substituted derivative ( O‐DPD ) exhibited significant photoinitiation activity in photo‐DSC experiments. Steady state photolysis experiments showed decreased decomposition rates with increasing donor capability. A dimethylamino derivative N‐DPD was even photostable under these conditions. Because of to the D‐π‐A‐π‐D system of these compounds two‐photon induced 3D photopolymerization experiments were performed and N‐DPD showed outstanding performance compared to often applied single photon initiators. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3280–3291, 2007  相似文献   

5.
The purpose of our study was to design a new class of acrylate‐based monomers with an UV‐cleavable heteroatom bond, offering the possibility to initiate radical polymerization upon irradiation with UV‐light. A method to derive the double bond conversion from the ATR‐IR spectra of the monomers and the cured polymers was employed, that enabled us to calculate the theoretical polymerization heats of the new monomers. Their photopolymerization properties were determined by Photo Differential Scanning Calorimetry. Surprisingly, some of these new compounds exhibited high photoinitiation activity, comparable to well‐established Type II photoinitiator systems like benzophenone/triethanolamine. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 392–403, 2009  相似文献   

6.
In a continuation of our research on new chromophores for photoinitiators (PIs), we investigated a triple‐bond‐containing benzophenone derivative. 1,5‐Diphenyl‐1,4‐pentadiyn‐3‐one ( 2 ) was prepared from phenylacetylene and ethyl formate by a one‐pot reaction. Differential scanning photocalorimetry experiments in lauryl acrylate of 2 showed surprisingly high activity for the double‐bond conversion and rate of polymerization at the lowest PI concentrations and even without any coinitiator. By the application of monomers with abstractable hydrogens, significant improvement in the photoreactivity was observed. Ultraviolet–visible spectroscopy revealed strong absorption up to 350 nm. Steady‐state photolysis experiments proved that the photochemistry of this compound was faster than that of benzophenone. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 101–111, 2005  相似文献   

7.
Phosphorus‐containing vinyl esters and vinyl carbamates were synthesized as new biocompatible and degradable photopolymers. Reactivity of the monomers with one, two, and three polymerizable double bonds was evaluated by photo‐differential scanning calorimetry. With respect to their potential application in the biomedical field, studies on cytotoxicity, mechanical stability, and hydrolytic erosion behavior of the poly(vinyl alcohol)‐based derivatives were performed. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2916–2924, 2010  相似文献   

8.
Preparation and study of a series of copolymers incorporating 2‐vinyl‐4,4‐dimethylazlactone (VDMA) is reported. The reactivity ratios for photo‐initiated free radical copolymerization of VDMA with methacrylic acid (MAA), acrylic acid (AA), acrylamide (AAm), dimethylacrylamide (DMAA), hydroxyethyl methacrylate (HEMA), methoxy poly(ethylene glycol) methacrylate (MPEG300MA), and 2‐methacryloyloxyethyl phosphorylcholine (MPC), were determined by fitting comonomer conversion data obtained by in situ 1H NMR to a terminal copolymerization equation. Semi‐batch photo‐copolymerizations were then used to synthesize the corresponding VDMA copolymers with constant composition. Their solubility and dissolution behavior, as well as their hydrolysis half‐lives under physiological conditions, were determined. P(VDMA‐co‐MAA) copolymers with 52 to 93 mol % VDMA showed decreasing initial solubility and increasing hydrolysis half‐lives with increasing VDMA content. VDMA copolymers with nonionic monomers AAm and DMAA were water soluble only at VDMA contents of 41 and 22 mol % or less, respectively, and showed longer hydrolysis half‐lives than comparable MAA copolymers. VDMA copolymers with HEMA and MPEG300MA were found to crosslink during storage, so their hydrolysis half‐lives were not determined. VDMA copolymers with 18% zwitterionic MPC showed a much longer half‐life and superior initial solubility compared to analogous p(VDMA‐co‐MAA), identifying this copolymer as a promising candidate for macromolecular crosslinkers in, for example, aqueous layer‐by‐layer co‐depositions with polyamines. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

9.
The effect of magnetic field (MF) on the radical copolymerization of a series of water‐soluble and ionic monomers is presented including acrylamide (AM), acrylic acid (AA), its ionized form acrylate (A?), and diallyldimethylammonium chloride (DADMAC). The following combinations have been studied: AM/AA, AM/A?, AM/DADMAC, and AA/DADMAC. In addition to the MF, strong electrostatic interactions are present for the majority of monomer combinations and conditions. Although the monomer consumption rate (Rp) increased up to 65% applying a MF of 0.1 Tesla, the composition of the resulting copolymers was not affected under such conditions. Despite this increase of Rp by MF, the electrostatic repulsion between ionic monomers and charged growing radicals dominates Rp and governs the copolymer composition with and without MF. The order of the experimentally obtained reactivity ratios reflects the extent of electrostatic interaction: rAM/AA (1.41) < r (3.10) < rAA/DADMAC (4.25) < rAM/DADMAC (6.95) and rAA/AM (2.20) > rDADMAC/AA (0.25) > r (0.17) > rDADMAC/AM (0.03). Overall, weak MF offers to reduce the production time without modifying the product composition. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 373–383, 2009  相似文献   

10.
The photocuring process of the diglycidyl ether of bisphenol A (DGEBA) with the bislactone 1,6‐dioxaspiro[4,4]nonane‐2,7‐dione (s(γ‐BL)) was studied. Triarylsulfonium hexafluoroantimonate was employed as photoinitiator. FTIR/ATR was used to study the evolution of epoxy, lactone, and intermediate spiroorthoester groups to identify the different reactions that take place during the photocuring process. Photo‐DSC and DSC were used to study the thermal evolution of the photocuring process and to assess the Tg of the fully cured material. Thermogravimetric analysis (TGA) was used to determine the thermal stability of the fully cured material. The thermomechanical properties of the materials were investigated using dynamic mechanical‐thermal analysis. Shrinkage undergone during photocuring and gelation was studied with TMA. A strong influence of the photocuring temperature on the photocuring process of the DGEBA‐ s(γ‐BL) system was observed. Differences in the reactivity of the different species were observed with respect to the thermally cured system using ytterbium triflate as cationic thermal initiator. As a consequence, photocured materials exhibited a superior thermal stability and lower flexibility. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5446–5458, 2007  相似文献   

11.
Conjugated 1,4‐bis(n′‐quinolyl)‐1,3‐butadiynes were obtained through the oxidative dimerization of the corresponding n′‐ethynylquinolines catalyzed by cuprous chloride. Differential scanning calorimetry analysis of the 1,4‐bis[n′‐(quinolyl)]buta‐1,3‐diyne molecules produced evidence of a syn–anti rotational equilibrium around the 1,3‐diyne axis and an irreversible transformation into a thermopolymer. The topo‐oligomerization of 1,4‐bis[3′‐(quinolyl)]buta‐1,3‐diyne, which took place by irradiation with sunlight, was investigated with matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry. Accurate X‐ray molecular structure and refinement analysis of 1,4‐bis[3′‐(quinolyl)]buta‐1,3‐diyne was conducted. The molecular crystalline packing consisted of parallel arrays of two groups of centrosymmetric molecules (antirotamer) in a herringbone assemblage in the solid state. The polymerization of 3‐ethynylquinoline was carried out with the AlEt3/V(acac)3 system to produce a mixture of 1,2,4‐ and 1,3,5‐tris(3′‐quinolyl)benzene cyclotrimers and a trans–cisoid polyene structure. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 6031–6040, 2004  相似文献   

12.
The synthesis of a water‐soluble copolymer containing quinoline groups, P(DMAM‐co‐SDPQ), through free radical copolymerization of N,N‐dimethylacrylamide, DMAM, with 2,4‐diphenyl‐6‐(4‐vinylphenyl)quinoline, SDPQ, is presented and the optical properties of the final product are investigated in aqueous solution as a function of pH. It is found that the emission peak of SDPQ is red‐shifted from 411 to 484 nm with decreasing pH, due to the protonation of quinoline groups at low pH, suggesting that this copolymer may function as a luminescent pH‐indicator. Moreover, the copolymer exhibits the characteristics of a luminescent pH‐detector within the pH range 2 < pH < 4, as in this pH region the ratio of the emission intensity at 411 nm over that at 484 nm changes linearly in a logarithmic scale with the pH of the solution. Finally, the formation of less polar quinoline clusters in the aqueous P(DMAM‐co‐SDPQ) solution upon increasing pH was detected through Nile red probing. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 2078–2083, 2010  相似文献   

13.
Thermotropic liquid‐crystalline (LC) semirigid polyesters based on three terphenyl analogues of 1,3,4‐thiadiazole (2,5‐diphenyl‐1,3,4‐thiadiazole)s (DPTD) linking undecamethyleneoxy chain at different substituted positions were synthesized from three disubstituted (4,4′‐, 3,4′‐, and 3,3′‐) dioxydiundecanols of DPTD and four diesters, and the relationships between polymer structures and LC and optical properties were investigated. DSC measurements, texture observations, and wide‐angle X‐ray analyses revealed that the polymers composed of DPTD moiety having a more linear molecular structure and 1,4‐phenylene unit or short aliphatic chain tend to exhibit LC smectic C and/or A phases. The following observations were made: (1) the emergence of smectic C and/or A phases in all the polymers on the basis of 4,4′‐disubstituted DPTD, (2) formation of enantiotropic smectic C and/or A phases in the polymers containing a 1,4‐phenylene unit in the main chain, (3) formation of a more stable smectic C phase in the polymers having a short aliphatic [(CH2)4] chain, and (4) a decrease of the mesomorphic property of the polyesters in the order of 4,4′‐DPTD > 3,4′‐DPTD > 3,3′‐DPTD. Solution and solid‐state ultraviolet–visible and photoluminescent spectra indicated that all the polyesters display maximum absorbances and blue emissions arising from the DPTD moiety, whose peak maxima were shifted to lower wavelengths in the order of 4,4′‐DPTD > 3,4′‐DPTD > 3,3′‐DPTD as well as the aforementioned LC property. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2676–2687, 2003  相似文献   

14.
The cationic photopolymerization of oxetane‐based systems containing silicon monomers was investigated. For this purpose, three new silicon‐containing oxetane monomers were synthesized through a simple and straightforward synthetic method. The silicon‐containing monomers were added to a typical oxetane resin, 3,3′‐[oxydi(methylene)]bis(3‐ethyloxetane), in concentrations of 1–5 wt %. They exploited a certain surface tension effect without affecting the rate of polymerization. Enrichment only on the air side was achieved, which induced hydrophobicity in the photocured films, depending on the monomer structure and concentration. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1415–1420, 2004  相似文献   

15.
Glycohydrogels containing 2′‐acrylamidoethyl‐β‐d ‐galactopyranoside and varying levels of N,N′ methylene bisacrylamide and 3‐acrylamidopropyltris(trimethylsiloxy)silane were synthesized to determine the effects of crosslinker and amphipathic balance on equilibrium water content (EWC), bound water population, and hydrogen bonding dynamics at the water–polymer interface. Analogous dimethylacrylamide hydrogels were synthesized for comparison with a system containing lower hydrogen bonding propensity. An approach combining experiment (proton nuclear magnetic resonance, thermogravimetric analysis, differential scanning calorimetry, and dynamic vapor sorption analysis) and molecular dynamics simulations was employed to examine the relationship between bulk hydrogel properties, molecular water mobility, and hydrogen bonding characteristics. It was found that copolymer composition (hydrophobic content) and crosslink concentration in high water content glycohydrogels affect EWC, and by extension, structural water population. The organization of water at the polymer interface is greatly impacted by the surrounding environment, where hindered molecular water mobility promotes water–polymer binding and decreases water–water clustering. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 584–597  相似文献   

16.
In this work, the melting behaviors of nonisothermally and isothermally melt‐crystallized poly(L ‐lactic acid) (PLLA) from the melt were investigated with differential scanning calorimetry (DSC) and temperature‐modulated differential scanning calorimetry (TMDSC). The isothermal melt crystallizations of PLLA at a temperature in the range of 100–110 °C for 120 min or at 110 °C for a time in the range of 10–180 min appeared to exhibit double melting peaks in the DSC heating curves of 10 °C/min. TMDSC analysis revealed that the melting–recrystallization mechanism dominated the formation of the double melting peaks in PLLA samples following melt crystallizations at 110 °C for a shorter time (≤30 min) or at a lower temperature (100, 103, or 105 °C) for 120 min, whereas the double lamellar thickness model dominated the formation of the double melting peaks in those PLLA samples crystallized at a higher temperature (108 or 110 °C) for 120 min or at 110 °C for a longer time (≥45 min). © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 466–474, 2007  相似文献   

17.
We describe here the first example of the synthesis of 4‐arm star poly(acrylic acid) for use as a water‐soluble drag reducing agent, by applying Cu(0)‐mediated polymerization technique. High molecular weight 4‐arm star poly(tert‐butyl acrylate) (Mn = 3.0–9.0 × 105 g mol?1) was first synthesized using 4,4′‐oxybis(3,3‐bis(2‐bromopropionate)butane as an initiator and a simple Cu(0)/TREN catalyst system. Then, 4‐arm star poly(tert‐butyl acrylate) were subjected to hydrolysis using trifluoroacetic acid resulting in water‐soluble 4‐arm star poly(acrylic acid). Drag reduction test rig analysis showed 4‐arm star poly(acrylic acid) to be effective as a drag reducing agent with drag reduction of 24.3%. Moreover, 4‐arm star poly(acrylic acid) exhibited superior mechanical stability when compared with a linear poly(acrylic acid) and commercially available drag reducing polymers; Praestol and poly(ethylene oxide). The linear poly(acrylic acid), Praestol, and poly(ethylene oxide) all showed a large decrease in drag reduction of 8–12% when cycled 30 times through the drag reduction test rig while, in contrast, 4‐arm star poly(acrylic acid) demonstrated much higher mechanical stability. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 335–344  相似文献   

18.
The effect of different functional groups of methylated urea on the phase transition of poly(N‐isopropylacrylamide) (PNIPAM) aqueous solutions has been studied by a high‐sensitivity differential scanning calorimetry. The results reveal that with the addition of osmolytes with N? H groups, the enthalpy change increases with the number of DSC cycles, presumably due to the gradual formation of hydrogen bonds with dehydrated C?O groups of PNIPAM at high temperature. Moreover, with the addition of tetramethylurea (TMU) without hydrogen bond donor groups, the enthalpy change of PNIPAM solution remains unchanged with the number of DSC cycles and decreases with the TMU concentration, suggesting that the van der Waals interactions between TMU and isopropyl groups of PNIPAM and the weakening of hydrophobic interactions between isopropyl groups play a dominant role in the effect of TMU on the phase transition of PNIPAM. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1145–1151  相似文献   

19.
The kinetics and mechanism of the photoinitiated polymerization of 1,6‐hexanediol dimethacrylate (HDDMA) in a poly(methyl methacrylate) (PMMA) matrix were studied. The maximum double‐bond conversion, the maximum polymerization rate, the intrinsic reactivity, and the kinetic constants for propagation and termination were calculated. For this system, a reaction‐diffusion termination mechanism occurred from the start of the polymerization, and it was predominantly maintained until high monomer concentrations, probably because of the relatively high intermolecular attraction force between the PMMA matrix and HDDMA monomer. In addition, a comparative study of the photoinitiated polymerization of methacrylic monomers in four different polymeric matrices [styrene–butadiene–styrene (SBS), polystyrene (PS), polybutadiene (PB), and PMMA] was carried out. The aggregation state, vitreous or rubbery, of the monomer–matrix system and the intermolecular strength of attraction in the monomer–matrix system and growing macroradical and matrix systems were the principal factors influencing the kinetic and mechanistic behavior of these systems. When PB and SBS were used as matrices, crosslinked polymerized products were obtained as a result of the participation of double bonds of the matrix in the polymerization process (copolymerization). PS sequences in the SBS and PS matrices also took part in the polymerization process through the coupling of the benzylic radical to the growing macroradical. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 120–127, 2002  相似文献   

20.
Copolyperoxides of indene and ptert‐butylstyrene of different compositions were synthesized by free‐radical‐initiated oxidative copolymerization. The compositions of the copolyperoxides, obtained from 1H and 13C NMR spectra, were used to calculate the reactivity ratios of the monomers. The reactivity ratios indicated a larger proportion of indene units in random placement in the copolyperoxides. Thermal‐degradation studies by differential scanning calorimetry and electron‐impact mass spectrometry supported alternating peroxide units in the copolymer backbone. The activation energy for thermal degradation suggested that the degradation was dependent on the dissociation of the peroxide (? O? O? ) bonds in the backbone of the copolyperoxide chain. The flexibility of the copolyperoxides was examined in terms of the glass‐transition temperature. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 9–18, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号