首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Detailed finite element simulations are carried out to study the adhesive contact of viscoelastic spheres. The spheres are brought into contact by a compressive force that increases at a constant rate. Upon reaching a maximum load, the spheres are unloaded until they separate. We studied in detail the effect of loading and unloading rates on hysteresis and on the pull‐off force for a standard viscoelastic solid. The surface interaction is modeled by the Dugdale–Barenblatt model. Numerical results are compared with analytical models for bonding and debonding, including a recent theory proposed by Johnson. There is excellent agreement between analytical and finite element results for the bonding phase. However, for the debonding phase, current analytical models break down unless the loading and unloading rates are slow in comparison with the material relaxation time. Based on the finite element results, a simple approximate analytical model is proposed to quantify adhesive contact in the debonding phase. We also examine the dependence of hysteresis on interfacial parameters such as the cohesive strength and the intrinsic work of adhesion. Our results show that viscoelastic adhesive contact depends on the details of the surface interaction and cannot be determined solely by the work of adhesion. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 772–793, 2002  相似文献   

2.
This work considers the mechanics of tack in viscoelastic materials. We study a particular tack test in which a flat, rigid probe is brought into contact with the rough surface of a viscoelastic material. The rough surface is modeled as consisting of many spherical asperities of varying heights but all having the same radius. Because of the asperities, the apparent contact area can be much greater than the actual contact area, which is regarded as the key parameter that controls tack. We show how this actual contact area evolves with time under different loading conditions. Our formulation is different from previous theories in that it explicitly accounts for the fact that asperities of different heights are subjected to different loading histories. Explicit solutions are given for the cases of a constant load test, a load relaxation test, and a constant displacement rate test. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1485–1495, 2000  相似文献   

3.
An analytical model based on the Johnson–Kendall–Roberts (JKR) theory of adhesion was used to study the contact mechanics and adhesion of periodically rough surfaces. The relation of the applied load to the contact area and the work of adhesion W was found in closed form for arbitrary surface profiles. Our analysis showed that when the parameter [where α* is a numerical constant of order one, β is the aspect ratio of a typical surface profile (or asperity), and ρ is the number of asperities per unit length], the surfaces will jump into contact with each other with no applied load, and the contact area will continue to expand until the two surfaces are in full contact. The theory was then extended to the non‐JKR regime in which the region where the surface forces act is no longer confined to a small region near the contact zone. Exact solution was also obtained for this case. An exact analysis of the effect of entrapped air on the mechanics of adhesion and contact was also enacted. The results showed that interaction between asperities should be taken into consideration in contact‐mechanics models of adhesion or friction. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 1195–1214, 2001  相似文献   

4.
The effects of change in surface energy and bulk viscoelastic properties on the autohesive tack strength of brominated isobutylene‐cop‐methylstyrene (BIMS) rubber have been investigated by the addition of hydrocarbon resin (HCR) tackifier and maleated hydrocarbon resin (MA‐g‐HCR) tackifier. The addition of compatible HCR tackifier results in a reasonable increment in the tack strength of BIMS rubber by modifying only the bulk viscoelastic properties (compliance, entanglement molecular weight, relaxation time, self‐diffusion, and monomer friction coefficient values) of BIMS rubber to perform better during the course of bonding and debonding steps of the peel test. Incorporation of MA‐g‐HCR tackifier (containing 5–20 wt % of grafted maleic anhydride) steadily increases the tack strength of BIMS rubber further by precisely modifying both the surface energy and bulk viscoelastic properties to perform much better in the bonding and debonding steps. However, beyond 20 wt % of grafted maleic anhydride in the HCR tackifier, the tack strength starts decreasing due to the incompatibility between the blend components, and hence, the bulk viscoelastic properties required for bond formation are severely retarded by the interrelated reinforcing effect and the phase separation effect of the brittle MA‐g‐HCR tackifier in the BIMS rubber. Hence, the polar groups in a tackifier will contribute to significant enhancement of autohesive tack strength only if the bulk viscoelastic property of the rubber‐tackifier blend is favorable for bond formation and bond separation. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 972–982, 2010  相似文献   

5.
Copolymers that separately contained thiophosphate–polysiloxane, thiophosphate–amino, and thiophosphate–polysiloxane–amino groups were synthesized and characterized. The performances of these synthesized copolymers on metal surfaces under a high load and rotary velocity were examined by the measurement of the oil temperature, frictional coefficient, and electrical contact resistance between two metal surfaces. The configuration of the adsorption layer was studied with energy‐dispersive spectrometry (EDS) and scanning electron microscopy (SEM). Copolymers that contained amino–thiophosphate groups reduced the frictional coefficient between two metal surfaces and markedly limit the increase in the oil temperature. Notably, a higher content of polysiloxane groups in the copolymer corresponded to an increased operating time to establish the adsorption layer on the metal surface. However, a higher content of amino groups reduced the time required for the layer to form. The adsorption layers that formed on the metal surfaces were investigated by EDS as phosphides produced by a chemical reaction of the thiophosphate‐containing copolymer with the metal surface. These adsorption layers on the metal surface were directly observed with SEM. The layer that formed on the metal surface of copolymers containing less polysiloxane and more amino groups was the thickest layer for all the synthesized copolymers. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1795–1803, 2002  相似文献   

6.
Scratch testing has been performed on elastomeric poly(dimethylsiloxane) (PDMS) coatings on stainless steel with a spherical indenter. The friction coefficient (horizontal‐to‐normal force ratio) during scratching decreases with increasing normal load. This result can be explained by assuming that during scratching the contact area is determined by elastic deformation and the horizontal force is proportional to the contact area. With increasing driving speed, the friction coefficient increases, but the rate of increase decreases; this suggests that the scratching of the PDMS coating is a rate process and that the viscoelastic property of the coating influences its frictional behavior. Below a critical normal load, which increases with the coating thickness, the PDMS coating recovers elastically after being scratched so that there are no scratch marks left behind. Above the critical normal load, the coating is damaged by a combination of delamination at the coating/substrate interface and through‐thickness cracking. When the coating is damaged, there is an increase in the friction coefficient, and the friction force displays significant fluctuations. Furthermore, the critical normal load increases with the driving speed; this implies that time is needed to nucleate damage. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1530–1537, 2002  相似文献   

7.
We study the effect of surface tension on the flattening of a surface perturbed by a point load subsequent to its removal. The surface bounds an infinite isotropic linear viscoelastic incompressible half space. The point load is initially applied for a sufficiently long time so that the half space is fully relaxed before the load removal. An exact solution is obtained assuming small deformation. We then specialize our theory to the case of a standard viscoelastic solid. There is an initial reduction of the surface displacement immediately after load removal that is found to be directly proportional to the ratio of applied load to surface tension. This is followed by a temporal decay of the surface profile that depends only on the relaxation time and the long and short time moduli of the viscoelastic solid. Our work also provides the Green's function for a suddenly applied point load on the surface of a viscoelastic half space. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016, 54, 274–280  相似文献   

8.
Scratch testing was performed on poly(n‐butyl acrylate) (PnBA) films with a sapphire indenter with a spherical tip (76 μm in radius). For uncrosslinked PnBA film, the surface of which is sticky, the horizontal or scratching force decreases with decreasing normal load and has a residual value (~ 6 mN) as the normal load approaches zero. The relation between the scratching force and normal load can be understood by finite element computation based on the Johnson–Kendall–Roberts theory under the assumption that the scratching force is proportional to the contact area, which depends on the normal load. With increasing driving speed, the scratching force shows a power relation with speed indicating a rate process. For crosslinked PnBA film, which behaves as an elastomer, the horizontal force approaches zero at zero normal load. Below a critical normal load, which depends on the thickness of the film, the crosslinked film recovers elastically after being scratched. Above the critical load, the film is damaged and, depending on its thickness, shows two distinct damage mechanisms. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 585–592, 2002; DOI 10.1002/polb.10117  相似文献   

9.
The surface free energy of crosslinked photodefinable epoxy (PDE) was evaluated from the advancing contact angles measured by the sessile drop method. Poly(tetrafluoroethylene) (PTFE) was used as a reference material in the evaluation of the surface free energies by various models. Pure water, diiodomethane, formamide, ethylene glycol, diethylene glycol, glycerol, 1‐bromonaphthalene, decane, and tetradecane were used as the probing liquids. The surface free energies for PDE and PTFE were calculated to be 43.6 and 21.2 mJ/m2, respectively. The contact‐angle measurements indicated the isotropy of the PDE surface with respect to the surface free energy. The PDE coating was further characterized with scanning electron microscopy and atomic force microscopy. The PDE surface was treated chemically and by reactive ion etching (RIE) to determine their impact on the wettability and adhesion. The treatments resulted in decreased contact angles between the crosslinked PDE surface and water as the polarity of the surface increased from about 9% to 18 and 43% by the chemical and RIE treatments, respectively. On the contrary, the surface free energy of the treated PDEs, as calculated by the geometric mean model, did not change markedly (to 47.4 and 41.8 mJ/m2 by the chemical and RIE treatments, respectively). Consequently, the contact angles of diiodomethane and the PDE solution on the treated surfaces did not decrease noticeably. The stud‐pull test showed improved adhesion strength for PDE that was left less crosslinked and, therefore, had residual affinity against the sequential PDE layer. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2137–2149, 2002  相似文献   

10.
The relationship between the contact angles, surface tension, and surface roughness is reviewed. Numerical formulas related to the superhydrophobic rough surfaces of polymers are predicted with two approaches, the Wenzel and Cassie–Baxter models. With these models as a guide, an artificial superhydrophobic surface is created. Rough nylon surfaces mimicking the lotus leaf are created by the coating of a polyester surface with nylon‐6,6 short fibers via the flocking process. Poly(acrylic acid) chains aregrafted onto nylon‐6,6 surfaces, and this is followed by the grafting of 1H,1H‐perfluorooctylamine onto the poly(acrylic acid) chains. Water contact angles as high as 178° are achieved. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 253–261, 2007.  相似文献   

11.
Nanoindentation is an increasingly used method of extracting surface mechanical properties of viscoelastic materials, especially polymers. Recently, Hutcheson and McKenna used a viscoelastic contact mechanics model to analyze the contact problem between a nanosphere and polystyrene surface. In nanoindentation experiments, the ramp loading test is a similar problem to the particle embedment experiment except that the indentation load function differs. The motivation in this work is to expand the Hutcheson and McKenna analysis to the nanoindentation problem. In particular, we illustrate the limitations of analyzing only a single load‐indentation curve, which does not provide enough information to determine the full range of the viscoelastic response of a polymer, and we show that performing a test sequence that includes multiple loading rates or indentation rates spanning two or more orders of magnitude greatly improves the extracted viscoelastic properties. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 633–639  相似文献   

12.
A novel, soluble terephthalamide‐bridged ladderlike polysiloxane ( L ) was synthesized successfully for the first time by stepwise coupling polymerization. The process involved the hydrogen‐bonding self‐assembly of amido groups, which resulted in the formation of a more highly ordered polymeric structure. A novel monomer, bis(3‐methyldimethoxysilylpropyl) terephthalamide ( M ), was prepared by a hydrosilylation reaction in the presence of dicyclopentadienyl platinum dichloride as a catalyst. The structures of the monomer ( M ) and the polymer ( L ) were characterized by Fourier transform infrared, 1H NMR, 13C NMR, 29Si NMR, mass spectrometry, X‐ray diffraction, differential scanning calorimetry, and vapor pressure osmometry. All the characterization data indicated that the synthesized polymer ( L ) possessed an ordered ladderlike structure. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3161–3170, 2002  相似文献   

13.
The application of surface‐attached, thiol‐ene polymer films for controlling material properties in a gradient fashion across a surface was investigated. Thiol‐ene films were attached to the surface by first depositing a thiol‐terminated self‐assembled monolayer and performing a thiol‐ene photopolymerization reaction on the surface. Property gradients were created either by creating and modifying a gradient in the surface thiol density in the SAM or by changing the polymerization conditions or both. Film thickness was modified across the substrate by changing either the density of the anchoring thiol functional groups or by changing the reaction conditions such as exposure time. Thicker films (1–11 nm) were obtained by polymerizing acrylate polymer brushes from the surface with varying exposure time (0–60 s). The two factors, that is, the surface thiol density and the exposure time, were combined in orthogonal directions to obtain thiol‐ene films with a two‐dimensional thickness gradient with the maximum thickness being 4 nm. Finally, a thiol‐acrylate Michael type addition reaction was used to modify the surface thiol density gradient with the cell‐adhesive ligand, Arg‐Gly‐Asp‐Ser (RGDS), which subsequently yielded a gradient in osteoblast density on the surface. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 7027–7039, 2006  相似文献   

14.
Self‐cleaning surface is potentially a very useful addition for many commercial products due to economic, aesthetic, and environmental reasons. Super‐hydrophobic self‐cleaning, also called Lotus effect, utilizes right combination of surface chemistry and roughness to force water droplets to form high contact angle on a surface, easily roll off a surface and pick up dirt particles on its way. Electrospinning is a promising technique for creation of superhydrophobic self‐cleaning surfaces owing to a wide set of parameters that allow effectively controlling roughness of resulted webs. This article gives a brief introduction to the theory of super‐hydrophobic self‐cleaning and basic principles of the electrospinning process and reviews the scientific literature where electrospinning was used to create superhydrophobic surfaces. The article reviewed are categorized into several groups and their results are compared in terms of superhydrophobic properties. Several issues with current state of the art and highlights of important areas for future research are discussed in the conclusion. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

15.
16.
Pressure‐sensitive adhesives (PSAs) are finding increasing applications in various areas of industry and medicine. PSAs are a special class of viscoelastic polymers that form strong adhesive joints with substrates of varying chemical nature under application of light external bonding pressures (1–10 Pa) over short periods of time (1–5 s). To be a PSA, a polymer should possess both high fluidity under applied bonding pressure, to form good adhesive contact, and high cohesive strength and elasticity, which are necessary for resistance to debonding stresses and for dissipation of mechanical energy at the stage of adhesive bond failure under detaching force. For rational design of novel PSAs, molecular insight into mechanisms of their adhesive behavior is necessary. As shown in this review, strength of PSA adhesive joints is controlled by a combination of diffusion, viscoelastic, and relaxation mechanisms. At the molecular level, strong adhesion is the result of a narrow balance between two generally conflicting properties: high cohesive strength and large free volume. These conflicting properties are difficult to combine in a single polymer material. Individually, high cohesive interaction energy and large free volume are necessary but insufficient prerequisites for PSA strength. Evident correlations are observed between the adhesive bond strengths of different PSAs, and their relaxation behaviors are described by longer relaxation times. Innovative PSAs with tailored properties can be produced by physical mixing of nonadhesive long‐ and short‐chain linear parent polymers, with groups at the two ends of the short chains complementary to the functional groups in the recurring units of the long chains. Although chemical composition and molecular structure of such innovative adhesives are unrelated to those of conventional PSAs, their mechanical properties and adhesive behaviors obey the same general laws, such as the Dahlquist's criterion of tack. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

17.
Improvement of primer adhesion to thermoplastic olefins (TPOs) by surface modification with a low‐temperature cascade arc discharge‐air plasmas was investigated. Air plasma with a low‐temperature cascade arc plasma torch can be used for improving the primer adhesion to TPOs. Tape‐adhesion tests (ASTM 3359‐92a method) demonstrated this improvement with a rating of “0” for untreated TPOs and “5” for air plasma‐modified TPOs at certain plasma conditions even for aging at 60 °C and 80% relative humidity for 5 days. The adhesion to primer for the soft and flexible kind of TPOs (ETA‐3041c and ETA‐3101) was easily enhanced. The adhesion to primer for the hard and brittle TPOs (ETA‐3183) needs to optimize the plasma conditions to pass the wet‐adhesion test using air plasmas. To relate the surface characteristics of air plasma‐modified TPOs to adhesion performance with primer, the wettability and polarity of TPOs were evaluated by the contact‐angle measurements of primer and deionized water to TPOs. TPO surface morphology was evaluated using scanning electron microscopy. The surface composition was characterized with electron spectroscopy for chemical analysis. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 623–637, 2002; DOI 10.1002/polb.10122  相似文献   

18.
A new method for depositing metal onto a polymer surface has been developed in which the metal coating of polymer beads is performed with hydrazine functions as reducing agents on the surface of the polymer itself. In this study, glycidyl methacrylate–methyl methacrylate–divinyl benzene terpolymer was prepared as spherical beads with a suspension polymerization methodology. Beads of the polymer sample (210–420‐μm fraction) containing 3.4 mmol g?1 epoxy were treated with an excess of hydrazinium hydroxide to yield a polymer with 2.3 mmol g?1 hydrazine functions. The hydrazine functions on the polymer surfaces were efficient in metal reductions. Therefore, the modified bead polymer samples, when soaked in aqueous ammonia solutions of Ni(II), Ag(I), and Cu(II) ions (0.1 M), were covered rapidly by the corresponding zero‐valent metal ions. Metal deposition took place almost quantitatively (ca. 4.5 mmol/g of the polymer) within 60 min of the contact times. The accumulations of metal were followed visually and occurred only on the polymer beads. There was no evidence that the reaction occurred within the solution. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 748–754, 2002; DOI 10.1002/pola.10158  相似文献   

19.
The effects of different surface modifications on the adhesion of copper to a liquid‐crystalline polymer (LCP) were investigated with X‐ray photoelectron spectroscopy, scanning electron microscopy, atomic force microscopy, contact‐angle measurements, and pull tests. High pull‐strength values were achieved when copper was sputter‐deposited onto plasma and reactive‐ion‐etching (RIE)‐pretreated LCP surfaces. The values were comparable to the reference pull strengths obtained with laminated copper on the LCP. The adhesion was relatively insensitive to the employed feed gas in the pretreatments. The surface characterizations revealed that for RIE and plasma treatments, the enhanced adhesion was attributable to the synergistic effects of the increased surface roughness and polar component of the surface free energy of the polymer. However, if the electroless copper deposition was performed on RIE‐ or plasma‐treated surfaces, very poor adhesion was measured. Good adhesion between the LCP substrate and electrolessly deposited copper was achieved only in the case of wet‐chemical surface roughening as a result of the creation of a sufficient number of mechanical interlocking sites, together with a significant loss of oxygen functionalities, on the surface. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 623–636, 2003  相似文献   

20.
The indentation of standard viscoelastic solids, that is, the three‐element viscoelastic material, by an axisymmetric, flat‐ended indenter has been investigated theoretically. Under the boundary conditions of flat‐punch indentation of a viscoelastic half‐space, the solutions of the equations of viscoelastic deformation are derived for the standard viscoelastic material. Their generality resides in their inclusion of compressible as well as incompressible solids. They cover the two transient situations: flat‐punch creep test and load‐relaxation test. In experimental tests of their applicability, nanoindentation and microindentation probes under creep and relaxation conditions yielded a modulus from 0.1 to 1.1 GPa and viscosity from 1 to 37 Gpa · s for a crosslinked glassy polyurethane coatings. For bulk polystyrene, the values vary from 1 to 2 GPa and from 20 to 40 Gpa · s, respectively. The analysis here provides a fundamental basis for probing elastic and viscous properties of coatings with nanoindentation or microindentation tests. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 10–22, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号