首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The expanded mixed covolume method for the two‐dimensional Sobolev equation with convection term is developed and studied. This method uses the lowest‐order Raviart‐Thomas mixed finite element space as the trial function space. By introducing a transfer operator γh which maps the trial function space into the test function space and combining expanded mixed finite element with mixed covolume method, the continuous‐in‐time, discrete‐in‐time expanded mixed covolume schemes are constructed, and optimal error estimates for these schemes are obtained. Numerical results are given to examine the validity and effectiveness of the proposed schemes.© 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

2.
The pseudostress approximation of the Stokes equations rewrites the stationary Stokes equations with pure (but possibly inhomogeneous) Dirichlet boundary conditions as another (equivalent) mixed scheme based on a stress in H(div) and the velocity in L2. Any standard mixed finite element function space can be utilized for this mixed formulation, e.g., the Raviart‐Thomas discretization which is related to the Crouzeix‐Raviart nonconforming finite element scheme in the lowest‐order case. The effective and guaranteed a posteriori error control for this nonconforming velocity‐oriented discretization can be generalized to the error control of some piecewise quadratic velocity approximation that is related to the discrete pseudostress. The analysis allows for local inf‐sup constants which can be chosen in a global partition to improve the estimation. Numerical examples provide strong evidence for an effective and guaranteed error control with very small overestimation factors even for domains with large anisotropy.© 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 1411–1432, 2016  相似文献   

3.
In this paper, a new splitting positive definite nonconforming mixed finite element method is proposed for pseudo-hyperbolic equations, in which a quasi-Wilson quadrilateral element is used for the flux p, and the bilinear element is used for u. Superconvergence results in ||·||div,h norm for p and optimal error estimates in L2 norm for u are derived for both semi-discrete and fully discrete schemes under almost uniform meshes.  相似文献   

4.
A semilinear elliptic equation dΔu ? u + up =0 over the unit ball in ?2 with positive solution and the homogeneous Neumann boundary condition is considered. This equation models applications like chemotactic aggregation and biological pattern formation. Recent theoretical analyses on the equation suggest little continuous solution properties. Focusing on solving the discretized version of the equation, this work proposes an efficient algorithm that combines a newly developed discretization scheme on polar coordinates with a fast Fourier solver. An analysis of the induced matrix structures proves the algorithm converges to positive solutions; the analysis also establishes the q‐axial symmetry and monotonicity behavior of the solutions. Based on the q‐axial symmetry property, Numerical experiments were conducted to visualize various solution forms that are new to the best of our knowledge. The experiments also illustrated sensitivity behavior of the solutions. © 2002 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 18: 261–279, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/num.10006  相似文献   

5.
This paper deals with the existence of positive solution for impulsive boundary value problem with p‐Laplacian in Banach spaces. There is no literature researching on p‐Laplacian boundary value problem in Banach spaces. The main difficulty that appears when passing from p = 2 to p ≠ 2 is that for p ≠ 2, it is impossible for us to find a Green's function in the equivalent integral operator because the differential operator (?p(u ′ )) ′ is nonlinear, so it is difficult for us to prove that the equivalent integral operator is a strict‐set‐contraction operator. Even in the absence of pulse effect, these results are new. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
This article studies superconvergence phenomena of the split least‐squares mixed finite element method for second‐order hyperbolic equations. By selecting the least‐squares functional properly, the procedure can be split into two independent symmetric positive definite subprocedures, one of which is for the primitive unknown and the other is for the flux. Based on interpolation operators and an auxiliary projection, superconvergent H1 error estimates for the primary variable u and L2 error estimates for the introduced flux variable σ are obtained under the standard quasiuniform assumptions on finite element partition. A numerical example is given to show the performance of the introduced scheme. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 222‐238, 2014  相似文献   

7.
A demonstration method is presented, which will ensure the existence of positive global solutions in time to the reaction–diffusion equation ?utu+up=0 in ?n×[0, ∞), for exponents p?3 and space dimensions n?3. This method does not require the initial value to have a specific uniform smallness condition, but rather to satisfy a bell‐like form. The method is based on a specific upper solution, which models the diffusion process of the heat equation. The upper solution is not self‐similar, but does have a self‐similar‐like form. After transforming the reaction–diffusion problem into an equivalent one, whose initial value is uniformly very small, a local solution is obtained in the time interval [0, 1] by the use of this upper solution. This local solution is then extended to [0, ∞) through an infinite sequence of extensions. At each step, an appropriate change of variables will transform the extension into a problem nearly identical to the local problem in [0, 1]. These transformations exploit the diffusive and self‐similar‐like nature of the upper solution. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
Least‐squares mixed finite element schemes are formulated to solve the evolutionary Navier‐Stokes equations and the convergence is analyzed. We recast the Navier‐Stokes equations as a first‐order system by introducing a vorticity flux variable, and show that a least‐squares principle based on L2 norms applied to this system yields optimal discretization error estimates. © 2002 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 18: 441–453, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/num.10015  相似文献   

9.
The present work is an extension of our previous work (Bradji, Numer Methods Partial Differ Equations, to appear) which dealt with error analysis of a finite volume scheme of a first convergence order (both in time and space) for second‐order hyperbolic equations on general nonconforming multidimensional spatial meshes introduced recently in (Eymard et al. IMAJ Numer Anal 30(2010), 1009–1043). We aim in this article to get some higher‐order time accurate schemes for a finite volume method for second‐order hyperbolic equations using the same class of spatial generic meshes stated above. We derive a family of finite volume schemes approximating the wave equation, as a model for second‐order hyperbolic equations, in which the discretization in time is performed using a one‐parameter scheme of the Newmark's method. We prove that the error estimate of these finite volume schemes is of order two (or four) in time and it is of optimal order in space. These error estimates are analyzed in several norms which allow us to derive approximations for the exact solution and its first derivatives whose the convergence order is two (or four) in time and it is optimal in space. We prove in particular, when the discrete flux is calculated using a stabilized discrete gradient, that the convergence order is \begin{align*}k^2+h_\mathcal{D}\end{align*} or \begin{align*}k^4+h_\mathcal{D}\end{align*}, where \begin{align*}h_\mathcal{D}\end{align*} (resp. k) is the mesh size of the spatial (resp. time) discretization. These estimates are valid under the regularity assumption \begin{align*}u\in C^4(\lbrack 0,T\rbrack;C^2(\overline{\Omega}))\end{align*}, when the schemes are second‐order accurate in time, and \begin{align*}u\in C^6(\lbrack 0,T\rbrack;C^2(\overline{\Omega}))\end{align*}, when the schemes are four‐order accurate in time for the exact solution u. The proof of these error estimates is based essentially on a comparison between the finite volume approximate solution and an auxiliary finite volume approximation. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

10.
In this paper we study the Cauchy problem for the fractional diffusion equation ut + (?Δ)α/2u=?·(u?(Δ?1u)), generalizing the Keller–Segel model of chemotaxis, for the initial data u0 in critical Besov spaces ?(?2) with r∈[1, ∞], where 1<α<2. Making use of some estimates of the linear dissipative equation in the frame of mixed time–space spaces, the Chemin ‘mono‐norm method,’ Fourier localization technique and the Littlewood–Paley theory, we obtain a local well‐posedness result. We also consider analogous ‘doubly parabolic’ models. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
In this paper, we consider a high order finite volume approximation of one‐dimensional nonlocal reactive flows of parabolic type. The method is obtained by discretizing in space by arbitrary order vertex‐centered finite volumes, followed by a modified Simpson quadrature scheme for the time stepping. Compared to the existed finite volume methods, this new finite volume scheme could achieve the desired accuracy with less data storage by employing higher‐order trial spaces. The finite volume approximations are proved to possess optimal order convergence rates in the H1‐norm and L2‐norm, which are also confirmed by numerical tests. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
In this article, we develop a nonconforming mixed finite element method to solve Biot's consolidation model. In particular, this work has been motivated to overcome nonphysical oscillations in the pressure variable, which is known as locking in poroelasticity. The method is based on a coupling of a nonconforming finite element method for the displacement of the solid phase with a standard mixed finite element method for the pressure and velocity of the fluid phase. The discrete Korn's inequality has been achieved by adding a jump term to the discrete variational formulation. We prove a rigorous proof of a‐priori error estimates for both semidiscrete and fully‐discrete schemes. Optimal error estimates have been derived. In particular, optimality in the pressure, measured in different norms, has been proved for both cases when the constrained specific storage coefficient c0 is strictly positive and when c0 is nonnegative. Numerical results illustrate the accuracy of the method and also show the effectiveness of the method to overcome the nonphysical pressure oscillations. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

13.
In this article we prove uniform convergence estimates for the recently developed Galerkin‐multigrid methods for nonconforming finite elements for second‐order problems with less than full elliptic regularity. These multigrid methods are defined in terms of the “Galerkin approach,” where quadratic forms over coarse grids are constructed using the quadratic form on the finest grid and iterated coarse‐to‐fine intergrid transfer operators. Previously, uniform estimates were obtained for problems with full elliptic regularity, whereas these estimates are derived with less than full elliptic regularity here. Applications to the nonconforming P1, rotated Q1, and Wilson finite elements are analyzed. The result applies to the mixed method based on finite elements that are equivalent to these nonconforming elements. © 2002 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 18: 203–217, 2002; DOI 10.1002/num.10004  相似文献   

14.
In this article, using a single computational cell, we report some stable two‐level explicit finite difference approximations of O(kh2 + h4) for ?u/?n for three‐space dimensional quasi‐linear parabolic equation, where h > 0 and k > 0 are mesh sizes in space and time directions, respectively. When grid lines are parallel to x‐, y‐, and z‐coordinate axes, then ?u/?n at an internal grid point becomes ?u/?x, ?u/?y, and ?u/?z, respectively. The proposed methods are also applicable to the polar coordinates problems. The proposed methods have the simplicity in nature and use the same marching type of technique of solution. Stability analysis of a linear difference equation and computational efficiency of the methods are discussed. The results of numerical experiments are compared with exact solutions. © 2003 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 19: 327–342, 2003.  相似文献   

15.
We exhibit new concentration phenomena for the equation ? ε2 Δu + u = up in a smooth bounded domain Ω ? ?2 and with Neumann boundary conditions. The exponent p is greater than or equal to 2 and the parameter ε is converging to 0. For a suitable sequence εn → 0 we prove the existence of positive solutions un concentrating at the whole boundary of Ω or at some component. © 2002 Wiley Periodicals, Inc.  相似文献   

16.
The Bitsadze–Samarskii type nonlocal boundary value problem for the differential equation in a Hilbert space H with the self‐adjoint positive definite operator A with a closed domain D(A) ? H is considered. Here, f(t) be a given abstract continuous function defined on [0,1] with values in H, φ and ψ be the elements of D(A), and λj are the numbers from the set [0,1]. The well‐posedness of the problem in Hölder spaces with a weight is established. The coercivity inequalities for the solution of the nonlocal boundary value problem for elliptic equations are obtained. The fourth order of accuracy difference scheme for approximate solution of the problem is presented. The well‐posedness of this difference scheme in difference analogue of Hölder spaces is established. For applications, the stability, the almost coercivity, and the coercivity estimates for the solutions of difference schemes for elliptic equations are obtained. Mathematical Methods in the Applied Sciences. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
We consider the problem of minimizing 0<p<1, h∈?, σ>0, among functions u:?d?Ω→?d, u∣?Ω=0, and measurable characteristic functions χ:Ω→?. Here ?+h, ??, denote quadratic potentials defined on the space of all symmetric d×d matrices, h is the minimum energy of ?+h and ε(u) denotes the symmetric gradient of the displacement field. An equilibrium state û, χ?, of I [·,·,h, σ] is termed one‐phase if χ?≡0 or χ?≡1, two‐phase otherwise. We investigate the way in which the distribution of phases is affected by the choice of the parameters h and σ. Copyright 2002 John Wiley & Sons, Ltd.  相似文献   

18.
We consider the two‐dimensional problem of the scattering of a time‐harmonic wave, propagating in an homogeneous, isotropic elastic medium, by a rough surface on which the displacement is assumed to vanish. This surface is assumed to be given as the graph of a function ?∈C1,1(?). Following up on earlier work establishing uniqueness of solution to this problem, existence of solution is studied via the boundary integral equation method. This requires a novel approach to the study of solvability of integral equations on the real line. The paper establishes the existence of a unique solution to the boundary integral equation formulation in the space of bounded and continuous functions as well as in all Lp spaces, p∈[1, ∞] and hence existence of solution to the elastic wave scattering problem. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

19.
It is well known that, in a topological space, the open sets can be characterized using ?lter convergence. In ZF (Zermelo‐Fraenkel set theory without the Axiom of Choice), we cannot replace filters by ultrafilters. It is proven that the ultra?lter convergence determines the open sets for every topological space if and only if the Ultrafilter Theorem holds. More, we can also prove that the Ultra?lter Theorem is equivalent to the fact that uX = kX for every topological space X, where k is the usual Kuratowski closure operator and u is the Ultra?lter Closure with uX (A):= {xX: (? U ultrafilter in X)[U converges to x and AU ]}. However, it is possible to built a topological space X for which uXkX, but the open sets are characterized by the ultra?lter convergence. To do so, it is proved that if every set has a free ultra?lter, then the Axiom of Countable Choice holds for families of non‐empty finite sets. It is also investigated under which set theoretic conditions the equality u = k is true in some subclasses of topological spaces, such as metric spaces, second countable T0‐spaces or {?} (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
A least‐squares mixed finite element method for linear elasticity, based on a stress‐displacement formulation, is investigated in terms of computational efficiency. For the stress approximation quadratic Raviart‐Thomas elements are used and these are coupled with the quadratic nonconforming finite element spaces of Fortin and Soulie for approximating the displacement. The local evaluation of the least‐squares functional serves as an a posteriori error estimator to be used in an adaptive refinement algorithm. We present computational results for a benchmark test problem of planar elasticity including nearly incompressible material parameters in order to verify the effectiveness of our adaptive strategy. For comparison, conforming quadratic finite elements are also used for the displacement approximation showing convergence orders similar to the nonconforming case, which are, however, not independent of the Lamé parameters. © 2004 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号