首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Statistical and block all‐siloxane copolymers containing quaternary ammonium salt (QAS) groups with biocidal activity as lateral substituents were synthesized as models for the study of the effect of the arrangement of the QAS groups in the copolymer chain on their antimicrobial activity. The bioactive siloxane unit was [3‐n‐octyldimethylammoniopropyl]methylsiloxane, and the neutral unit was dimethylsiloxane. The copolymers also contained siloxane units with unreacted precursor 3‐chloropropyl or 3‐bromopropyl groups. A small number of units containing highly hydrophilic 3‐(3‐hydroxypropyl‐dimethylammonio)propyl groups were introduced to increase the solubility of the copolymers in water. The bioactive and bioneutral units were arranged in the polymer chain either in blocks or in statistical order. The block copolymers differed in the number and length of segments. The copolymers were obtained by the quaternization of tertiary amines by chloropropyl or bromopropyl groups attached to polysiloxane chains. The arrangement of the bioactive groups was controlled by the arrangement of the halogenopropyl groups in the bioactive copolymer precursor. All model siloxane copolymers showed high bactericidal activity in a water solution toward the gram‐negative bacteria Escherichia coli and the gram‐positive bacteria Staphylococcus aureus. However, no essential differences in the activities of the copolymers with block and statistical arrangements of units were detected. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2939–2948, 2003  相似文献   

2.
Ionic organic/siloxane networks containing quaternary ammonium salt (QAS) sequences in the cross‐linking bridges were obtained by the Menshutkin reaction of oligo(N,N‐dimethylaminoethylmethacrylate) (ODMAEM) with a telechelic chloroalkylated siloxane (CAS), such as 1,3‐bis‐(chloromethyl)‐1,1,3,3‐tetramethyldisiloxane, 1,3‐bis‐(chloropropyl)‐1,1,3,3‐tetramethyldisiloxane, and α,ω‐bis(chloromethyl) oligodimethylsiloxane. The resulted structures were investigated by Fourier transform infrared spectroscopy emphasizing the presence of both organic and siloxane moieties. The thermogravimetric analysis under inert atmosphere of the networks, besides the thermal stability, gave also information on the composition of hybrid hydrogels. The morphology of the lyophilized networks was evidenced by environmental scanning electron microscopy, as a function of CAS structure and CAS: ODMAEM feed molar ratio. The swelling response of the ionic networks in water as a function of pH and counterion nature and concentration as well as the water vapors sorption capacity in dynamic regime were evaluated. The properties of the ionic hybrid hydrogels were correlated with the reactants feed molar ratio and concentration of the reaction mixture, CAS type, and the presence of a catalyst. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2009  相似文献   

3.
A novel 5‐membered cyclic dithiocarbonate (DTC) having a siloxane moiety, 5‐(3‐trimethoxysilylpropyloxymethyl)‐1,3‐oxathiolane‐2‐thione, was synthesized from the corresponding epoxide precursor by its cycloaddition with carbon disulfide. The siloxane group underwent condensation reaction by the treatment with water and a basic or acidic catalyst, to afford the corresponding oligomer having siloxane main chain and DTC pendant. The resulting oligomer was liquid and soluble in organic solvents such as THF and chloroform. Treatment of the oligomer with amines resulted in selective ring‐opening reaction of the DTC group, generating a thiol group, which underwent oxidative coupling reaction to make the oligomer successfully cured. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4422–4430, 2005  相似文献   

4.
A staff‐type dendritic carbosilane was synthesized with the siloxane polymer Me3SiO? [MeSi(H)O]n? SiMe3 as the core. Through hydrosilation and alcoholysis, the polymeric core grew to the second generation, which contained three, six, and nine allyloxy end groups on each siloxane unit backbone, respectively. The reaction of the monofunctionalized second‐parent generation, which had three Si? Cl groups on the peripheral layer of the unit backbone, with allylalcohol, cholesterol, 8‐hydroxyquinoline, 5‐(2‐hydroxyl)‐4‐methylthiazole, 4‐pyridinepropanol, and 4‐pyridinealdoxime in the presence of 1,1,2,2‐tetramethyethylenediamine, produced end‐functionalized, staff‐type dendrimers. The characterization of the dendritic polymers was carried out with NMR spectroscopy and gel permeation chromatography as well as elemental analysis. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 976–982, 2002  相似文献   

5.
Novel fluorine containing siloxane monomer, namely, 4‐trifluoromethylphenylmethyl cyclosiloxane ( PF3 ) and mixed cyclosiloxane including both 4‐trifluoromethylphenylmethyl siloxane ( P ) unit and trifluoropropyl siloxane ( F ) unit were successfully synthesized in this study. Furthermore, their series including vinyl‐terminated copolymers with different compositions were synthesized. The microstructures of copolymers were investigated by 1H NMR, 29Si NMR, 19F NMR, Fourier transform infrared spectroscopy, and differential scanning calorimetry (DSC). The results of characterizations confirmed that the copolymers exhibited random microstructure. Moreover, the analysis of the result of DSC also revealed that the copolymers had a low glass transition temperature. The thermogravimetric analysis indicated that poly(4‐trifluoromethylphenylmethyl)siloxane ( PPF3 ) exhibited higher thermal stability than conventional fluorosilicones rubber ( FSR ). The dynamic mechanical analysis showed that the damping factors of these copolymers were greater than 0.3 in a wide range of temperature. The mass swelling ratios were less than 5.5% when the samples were immersed in No. 3 jet fuel for a month. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1023–1031  相似文献   

6.
Poly(1,1‐bis(ethoxycarbonyl)‐2‐vinyl cyclopropane (ECVP)‐graft‐dimethyl siloxane) copolymers were prepared using a macromonomer approach. Poly(dimethyl siloxane) (PDMS) macromonomers were prepared by living anionic polymerization of cyclosiloxanes followed by sequential chain‐end capping with allyl chloroformate. These macromonomers were then copolymerized with ECVP. MALDI‐ToF mass spectrometry and 1H NMR spectroscopy were used to show that the macromonomers had approximately 80% of the end groups functionalized with allyl carbonate groups. Gradient polymer elution chromatography showed that high yields of the graft copolymers were obtained, along with only small fractions of the PECVP and PDMS homopolymers. Differential scanning calorimetry showed that the low glass transition temperature (Tg) of the PDMS component could be maintained in the graft copolymers. However, the Tg was a function of polymer composition and the polymers produced had Tgs that ranged from ?50 to ?120 °C. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

7.
New step‐growth graft block copolymers were synthesized. These two‐sided comb copolymers consisted of a poly(amic ester) (PAE) backbone and pendant poly(propylene oxide) (PPO) grafts. The copolymers were made via a macromonomer approach, in which the 4,6‐bischlorocarbonyl isophthalic acid bis[poly(propylene oxide)] ester macromonomer was synthesized through the reaction of hydroxyl‐terminated PPO oligomers with pyromellitic dianhydride and oxalyl chloride. This macromonomer was subsequently used in step‐growth polymerization with comonomers 4,6‐bischlorocarbonyl isophthalic acid diethyl ester, 2,5‐bischlorocarbonyl terephthalic acid diethyl ester, and 2,2‐bis[4‐ (4‐aminophenoxy)phenyl] hexafluoropropane, and this yielded PPO‐co‐PAE graft copolymers. Accordingly, we report the synthesis and characterization of the PPO oligomer, the PPO macromonomer, and their corresponding PPO‐co‐PAE graft copolymers. Graft copolymers with PPO concentrations of 3–26 wt % were synthesized. These polymers were thermally cured to produce polyimide/PPO composites. The thermolysis of these polyimide/PPO composites yielded porous polyimide films with porosities ranging of 4–22.5%. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2266–2275, 2005  相似文献   

8.
Amphiphilic diblock copolymers that contained hydrophilic poly[bis(potassium carboxylatophenoxy)phosphazene] segments and hydrophobic polystyrene sections were synthesized via the controlled cationic polymerization of Cl3P?NSiMe3 with a polystyrenyl–phosphoranimine as a macromolecular terminator. These block copolymers self‐associated in aqueous media to form micellar structures which were investigated by fluorescence spectroscopy, dynamic light scattering, and transmission electron microscopy. The size and shape of the micelles were not affected by the introduction of different monovalent cations (Li+, K+, Na+, and Cs+) into the stable micellar solutions. However, exposure to divalent cations induced intermicellar crosslinking through carboxylate groups, which caused precipitation of the ionically crosslinked aggregates from solution. This micelle‐coupling behavior was reversible: the subsequent addition of monovalent cations caused the redispersion of the polystyrene‐block‐poly[bis(potassium carboxylatophenoxy)phosphazene] (PS–KPCPP) block copolymers into a stable micellar solution. Aqueous micellar solutions of PS–KPCPP copolymers also showed pH‐dependent behavior. These attributes make PS–KPCPP block copolymers suitable for studies of guest retention and release in response to ion charge and pH. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2912–2920, 2005  相似文献   

9.
The cationic ring‐opening polymerization of 3,3‐bis(hydroxymethyl)oxetane (BHMO) and the copolymerization of BHMO with 3‐ethyl‐3‐(hydroxymethyl)oxetane (EOX) were studied. Medium molecular weight polymers (number‐average molecular weight ≈ 2 × 103) were obtained in bulk polymerization. Poly[3,3‐bis(hydroxymethyl)oxetane], as highly insoluble, was only characterized by gel permeation chromatography and NMR methods in the esterified form. Copolymers of BHMO and EOX that were slightly soluble in organic solvents were characterized in more detail. In a copolymerization from a 1:1 mixture, the comonomers were consumed at equal rates. Matrix‐assisted laser desorption/ionization time‐of‐flight analysis confirmed that a random 1:1 copolymer was formed. 13C NMR analysis indicated that in contrast to previously described homopolymers of EOX in which the degree of branching was limited, the homopolymers of BHMO were highly branched. This pattern was preserved in the copolymers; EOX units were predominantly linear, whereas BHMO units were predominantly branched. The copolymerization of BHMO with EOX provides, therefore, a route to multihydroxyl branched‐polyethers with various degrees of branching containing ? OH groups exclusively as ≡C? CH2? OH units. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1991–2002, 2002  相似文献   

10.
Anionic and cationic ring‐opening polymerizations of two novel cyclotrisiloxanes, tetramethyl‐1‐(3′‐trifluoromethylphenyl)‐1‐phenylcyclotrisiloxane ( I ) and tetramethyl‐1‐[3′,5′‐bis(trifluoromethyl)phenyl]‐1‐phenylcyclotrisiloxane ( II ), are reported. Anionic ring‐opening polymerization of I or II leads to copolymers with highly regular microstructures. Copolymers obtained by cationic polymerizations of I or II , initiated by triflic acid, have less regular microstructures characteristic of chemoselective polymerization processes. The composition and microstructure of copolymers have been characterized by 1H and 29Si‐NMR, the molecular weight distributions by GPC, and the thermal properties by DSC and TGA. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5235–5243, 2004  相似文献   

11.
Comb‐shaped graft copolymers with poly(methyl methacrylate) as a handle were synthesized by the macromonomer technique in two steps. First, polytetrahydrofuran acrylate (A‐PTHF), prepared by the living cationic ring‐opening polymerization of tetrahydrofuran, underwent homopolymerization with 1‐(ethoxycarbonyl)prop‐1‐yl dithiobenzoate as an initiator under 60Co γ irradiation at room temperature; Second, the handle of the comb‐shaped copolymers was prepared by the block copolymerization of methyl methacrylate with P(A‐PTHF) as a macroinitiator under 60Co γ irradiation. The two‐step polymerizations were proved to be controlled with the following evidence: the straight line of ln[M]0/[M] versus the polymerization time, the linear increase in the number‐average molecular weight with the conversion, and the relatively narrow molecular weight distribution. The structures of the P(A‐PTHF) and final comb‐shaped copolymers were characterized by 1H NMR spectroscopy and gel permeation chromatography. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3367–3378, 2002  相似文献   

12.
Block copolyimides based on aromatic dianhydrides and diamines copolymerized with diamino room temperature ionic liquid (RTIL) monomers were synthesized over a range of compositions. Specifically, two diamino RTILs, 1,3‐di(3‐aminopropyl) imidazolium bis[(trifluoromethyl)sulfonyl] imide ([DAPIM] [NTf2]) and 1,12‐di[3‐(3‐aminopropyl) imidazolium] dodecane bis[(trifluoromethyl) sulfonyl] imide ([C12 (DAPIM)2] [NTf2]2) were synthesized using a Boc protection method. The two RTILs were reacted with 2,2‐bis(3,4‐carboxylphenyl) hexafluoropropane dianhydride (6FDA) to produce 6FDA‐RTILs oligomers that formed the RTIL component for the block copolyimides. The oligomers were reacted with 6FDA and m‐phenylenediamine (MDA) at oligomer concentration from 6.5 to 25.8 mol % to form block copolyimides. Increasing the concentration of the 6FDA‐RTIL oligomer in the block copolyimides resulted in a decrease in the thermal degradation temperature, glass transition temperature and an increase in the density. The gas permeability of the RTIL based block copolyimide decreased but the ideal permeability selectivity for CO2/CH4 gas pair increased relative to the pure 6FDA‐MDA. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 4036–4046, 2010  相似文献   

13.
A novel macrodiol based on mixed silicone and carbonate chemistries was synthesized and used as a soft segment precursor in the synthesis of two series of segmented polyurethane (PU) copolymers varying in hard segment content and soft segment molecular weight. The hard segments in these copolymers were derived from 4,4‐methylene diphenyl diisocyanate and 1,4‐butane diol. The phase transitions, microphase separation behavior, and mechanical properties of the copolymers were investigated using a variety of experimental methods. When compared with segmented PU copolymers having predominately poly(dimethyl siloxane) soft segments, these siloxane–carbonate soft segment copolymers exhibit enhanced intersegment mixing, and consequently relatively low mechanical modulus. With relatively low modulus and siloxane units in the soft phase, the siloxane–carbonate PUs have potential for use in cardiac and orthopedic biomedical applications. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

14.
Siloxane-incorporated epoxy (ESDG) copolymers were prepared by a hot-melt method. IR, 1H- and 13C-NMR are used to determine the structures. The data on the molecular properties indicate that reaction proceeded with a random polycondensation without involving the opening of the oxirane ring in the epoxy structure. Lowering Tgs with increasing siloxane content in copolymers are observed except for the copolymer modified with PDMS siloxane oligomer. Thermal stability data indicate that siloxane moiety exerts its thermal stability on the copolymer through dissipation of the heat, thus delaying thermal degradation of copolymers. Increasing impact strengths in J/M in the range of 22.0–59.0 are observed for copolymers and the improvement of the impact strength is closely related to the structure and content of siloxane oligomers in copolymers. A rough surface was observed by SEM examination on the propagation surface of the copolymeric impact specimen, while a smooth surface is observed on the unmodified epoxy specimen. The EDX analysis reveals these protruded features are Si-rich segments. The morphological observations suggest the siloxane segment may act as a toughening agent in the epoxy networks, thus contributing to the impact improvement of the copolymers. © 1996 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 34:1907–1922, 1996  相似文献   

15.
The syntheses and characterization of linear silarylene‐siloxane‐diacetylene polymers 3a–c and their thermal conversion to crosslinked elastomeric materials 4a–c are discussed. Inclusion of the diacetylene unit required synthesis of an appropriate monomeric species. 1,4‐Bis(dimethylaminodimethylsilyl)butadiyne [(CH3)2N? Si(CH3)2? C?C? C?C? (CH3)2Si? N(CH3)2] 2 was prepared from 1,4‐dilithio‐1,3‐butadiyne and 2 equiv of dimethylaminodimethylchlorosilane. The linear polymers were prepared via polycondensation of 2 with a series of disilanol prepolymers. The low molecular weight silarylene‐siloxane prepolymers 1a–c (terminated by hydroxyl groups) were synthesized via solution condensation of an excess amount of 1,4‐bis(hydroxydimethylsilyl)benzene with bis(dimethylamino)dimethylsilane. The linear polymers were characterized by 1H and 13C NMR, Fourier transform infrared spectroscopy, gel permeation chromatography, thermogravimetric analysis (TGA), and DSC. The elastomers exhibited long‐term oxidative stability up to 330 °C in air as determined by TGA. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 88–94, 2002  相似文献   

16.
This research was focused on the design and execution of new synthetic routes to low‐temperature‐curable poly(silarylene–siloxane)polyimides. The synthesis of individual oligoimide and silarylene–siloxane blocks was followed by hydrosilylation polymerization to produce crosslinked copolymers. The silarylene–siloxane and polyimide blocks were structurally characterized by IR and 1H NMR spectroscopy and size exclusion chromatography. The high‐temperature resistance of the copolymers was evaluated through the measurement of heat distortion temperatures (THD's) via thermomechanical analysis and by the determination of the weight loss at elevated temperatures via thermogravimetric analysis. Glass‐transition temperatures (Tg's) of the silarylene–siloxane segments were measured by differential scanning calorimetry. Hydrosilylation curing was conducted at 60 °C in the presence of chloroplatinic acid (H2PtCl6). The copolymers displayed both high‐temperature resistance and low‐temperature flexibility. We observed Tg of the silarylene–siloxane segment as low as ?77 °C and THD of the polyimide segment as high as 323 °C. The influence of various oligoimide molecular weights on the properties of copolymers containing the same silarylene–siloxane was examined. The effect of various silarylene–siloxane molecular weights on the properties of copolymers containing the same oligoimide was also examined. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4922–4932, 2005  相似文献   

17.
Siloxane‐modified cationic polyelectrolytes were synthesized through the quaternization reaction of a poly(ethylene glycol)‐based polymer containing tertiary amine groups in the chain with chloroalkyl‐functionalized siloxanes. Linear or crosslinked structures were obtained, depending on the functionality of the siloxane: a chloroalkyl‐monofunctionalized or ‐polyfunctionalized siloxane was used. The reaction occurred in solution with n‐propanol as a solvent and NaI as a catalyst. All products were characterized with elemental analysis and IR and 1H NMR spectrometry. Viscometric measurements of the linear polymer in dilute aqueous solutions revealed typical polyelectrolyte behavior. The swelling capacities in various solvents of the crosslinked structures were determined. The thermal stability of the crosslinked cationic structures obtained with a polyfunctional siloxane as a quaternization agent was much higher than that of the parent polymer. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3720–3728, 2004  相似文献   

18.
Two series of novel crosslinked siloxane‐based polymers and their complexes with lithium perchlorate (LiClO4) were prepared and characterized by Fourier transform infrared spectroscopy, solid‐state NMR (13C, 29Si, and 7Li nuclei), and differential scanning calorimetry. Their thermal stability and ionic conductivity of these complexes were also investigated by thermogravimetric and AC impedance measurements. In these polymer networks, poly(propylene oxide) chains with different molecular weights were introduced through self‐synthesized epoxy‐siloxane precursors cured with two curing agents. The glass‐transition temperature (Tg) of these copolymers is dependent on the length of the ether units. The dissolution of LiClO4 considerably increases the Tg of the polyether segments. The dependence of the ionic conductivity was investigated as a function of temperature, LiClO4 concentration, and the molecular weight of the polyether segments. The ion‐transport behavior was affected by the combination of the ionic mobility and number of carrier ions. The 7Li solid‐state NMR line shapes of these polymer complexes suggest a significant interaction between Li+ ions and the polymer matrix, and temperature‐ and LiClO4 concentration‐dependent chemical shifts are correlated with ionic conductivity. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1226–1235, 2002  相似文献   

19.
A silicon‐containing benzoxazine BATMS‐Bz (1,3‐bis(3‐aminopropyl)tetramethyldisiloxane‐benzoxazine) was used for polybenzoxazine modification by means of formation of benzoxazine copolymers with 3,4‐dihydro‐3‐phenyl‐2H‐1,3‐benzoxazine (Ph‐Bz) and 3‐furfuryl‐3,4‐dihydro‐2H‐1,3‐benzoxazine (F‐Bz), respectively. Ph‐Bz/BATMS‐Bz copolymers showed a positive deviation due the presence of intermolecular hydrogen bonding. However, this effect was not observed with F‐Bz/BATMS‐Bz copolymers. Meanwhile, BATMS‐Bz incorporation exhibited significant effect on toughening polybenzoxazines. It is therefore demonstrated that BATMS‐Bz is a high performance modifier to simultaneously enhance the Tg and toughness of polybenzoxazines. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1007–1015, 2007  相似文献   

20.
The luminescent complex [4‐(3‐hydroxypropyl)‐4′‐methyl‐2,2′‐bipyridine]‐bis(2,2′‐bipyridine)‐ruthenium(II)‐bis(hexafluoroantimonate) and its methacrylate derivative were successfully synthesized and fully characterized by two‐dimensional 1H and 13C{1H} NMR techniques [correlation spectroscopy (COSY) and heteronuclear multiple‐quantum coherence experiment (HMQC)], as well as matrix‐assisted laser desorption ionization time‐of‐flight mass spectrometry. The respective labeled methyl methacrylate‐ruthenium(polypyridyl) copolymers were obtained by free‐radical copolymerization with methyl methacrylate and were characterized utilizing NMR, IR, and UV–visible spectroscopy and gel permeation chromatography. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3954–3964, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号