首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poly(styrene‐graft‐ethyl methacrylate) graft copolymer was prepared by atom transfer radical polymerization (ATRP) with poly(styrene‐cop‐chloromethyl styrene)s in various compositions as macroinitiator in the presence of CuCl/1,2‐dipiperidinoethane at 130 °C in N,N‐dimethylformamide. Both macroinitiators and graft copolymers were characterized by elemental analysis, IR, 1H and 13C NMR, and differential scanning calorimetry. 1,2‐Dipiperidinoethane was an effective ligand of CuCl for ATRP in the graft copolymerization. The controlled growth of the side chain provided the graft copolymers with polydispersities of 1.60–2.05 in the case of poly(styrene‐cop‐chloromethyl styrene) (62:38) macroinitiator. Thermal stabilities of poly(styrene‐graft‐ethyl methacrylate) graft copolymers were investigated by thermogravimetric analysis as compared with those of the macroinitiators. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 668–673, 2003  相似文献   

2.
Well‐defined amphiphilic graft copolymers containing hydrophilic poly((meth)acrylic acid) (PMAA) or poly(acrylic acid) (PAA) side chains with gradient and statistical distributions were synthesized. For this purpose, the hydroxy‐functionalized copolymers with various gradient degrees, in which 2‐(6‐hydroxyhexanoyloxy)ethyl (meth)acrylate units (caprolactone 2‐[methacryloyloxy]ethyl ester, CLMA) formed strong gradient with tert‐butyl acrylate (tBA), slight gradient copolymers with tert‐butyl (meth)acrylate (tBMA), and statistical copolymers with methyl (meth)acrylate (MMA) were modified to bromoester multifunctional macroinitiators, P(tBMA‐grad‐BrCLMA), P(BrCLMA‐grad‐tBA), and P(BrCLMA‐co‐MMA). In the next step, they were applied in controlled radical polymerization of tBMA and tBA yielding graft copolymers with various lengths of side chains as well as graft densities. Further, the tert‐butyl groups in copolymers were successfully removed via acidolysis in the presence of trifluoracetic acid, which caused transformation of the hydrophobic graft copolymers into amphiphilic ones with ability of self‐assembly for the future biomedical applications. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
With the aim of creating highly branched amphiphilic block copolymers, the primary amine end groups of the poly(propylene imine) dendrimers DAB‐dendr‐(NH2)8 and DAB‐dendr‐(NH2)64 were converted to 2‐bromoisobutyramide groups. Poly (styrene‐btert‐butyl methacrylate) (PS‐b‐PtBMA) was synthesized by ATRP from the eight end group initiator, and poly(styrene‐btert‐butyl acrylate) (PS‐b‐PtBA) was synthesized from the 64 end group initiator. The tert‐butyl groups were removed to produce poly(styrene‐b‐methacrylic acid) (PS‐b‐PMAA) and poly(styrene‐b‐acrylic acid) (PS‐b‐PAA). Comparison of size exclusion chromatography (SEC) absolute molecular weight analyses of the polystyrenes with calculated molecular weights showed that the eight end group initiator produced a polystyrene with about eight branches, and that the 64 end group initiator produced polystyrene with many fewer than 64 branches. The PS‐b‐PtBA materials also have many fewer than 64 branches. The PS‐b‐PAA samples dissolved molecularly in DMF but formed aggregates in water even at pH 10. AFM images of the PS‐b‐PtBAs spin coated from THF and DMF onto mica showed aggregates. AFM images of the PS‐b‐PAAs spin coated from various mixtures of DMF and water at pH 10 showed flat disks and worm‐like images similar to those observed with linear PS‐b‐PAAs. Use of a PS‐b‐PAA and a PS‐b‐PMAA as templates for emulsion polymerization of styrene produced latexes 100–200 nm in diameter. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4623–4634, 2007  相似文献   

4.
A novel method for preparation the comb‐like copolymers with amphihilic poly(ethylene oxide)‐block‐poly(styrene) (PEO‐b‐PS) graft chains by “graft from” and “graft onto” strategies were reported. The ring‐opening copolymerization of ethylene oxide (EO) and ethoxyethyl glycidyl ether (EEGE) was carried out first using α‐methoxyl‐ω‐hydroxyl‐poly(ethylene oxide) (mPEO) and diphenylmethyl potassium (DPMK) as coinitiation system, then the EEGE units on resulting linear copolymer mPEO‐b‐Poly(EO‐co‐EEGE) were hydrolyzed and the recovered hydroxyl groups were reacted with 2‐bromoisobutyryl bromide. The obtained macroinitiator mPEO‐b‐Poly(EO‐co‐BiBGE) can initiate the polymerization of styrene by ATRP via the “Graft from” strategy, and the comb‐like copolymers mPEO‐b‐[Poly(EO‐co‐Gly)‐g‐PS] were obtained. Afterwards, the TEMPO‐PEO was prepared by ring‐opening polymerization (ROP) of EO initiated by 4‐hydroxyl‐2,2,6,6‐tetramethyl piperdinyl‐oxy (HTEMPO) and DPMK, and then coupled with mPEO‐b‐[Poly(EO‐co‐Gly)‐g‐PS] by atom transfer nitroxide radical coupling reaction in the presence of cuprous bromide (CuBr)/N,N,N′,N″,N″‐pentamethyldiethylenetriamine (PMDETA) via “Graft onto” method. The comb‐like block copolymers mPEO‐b‐[Poly(EO‐co‐Gly)‐g‐(PS‐b‐PEO)] were obtained with high efficiency (≥90%). The final product and intermediates were characterized in detail. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1930–1938, 2009  相似文献   

5.
Atomic force microscopy was successfully applied for comprehensive nanoscale surface and bulk morphological characterization of thermoplastic elastomeric triblock copolymers: poly[styrene‐b‐(ethylene‐co‐butylene)‐b‐styrene] (SEBS) having different block lengths and their clay based nanocomposites. Commercially available Cloisite®20A and octadecyl (C18) ammonium ion modified montmorillonite clay (OC) prepared in our laboratory by cation exchange reaction were used. The phase detected images in the tapping mode atomic force microscopy exhibited a well‐ordered phase separated morphology consisting of bright nanophasic domains corresponding to hard component and darker domains corresponding to softer rubbery ethylene‐co‐butylene (PEB) lamella for all the neat triblock copolymers. This lamellar morphology gave a domain width of 19–23 nm for styrenic nanophase and 12–15 nm for ethylene‐co‐butylene phase of SEBS having end to mid block length ratio of 30:70 and block molecular weights of 8800–41,200–8800. On increasing the ratio of block lengths of the polymer matrix and the selectivity of the solvent toward the blocks used for casting, the morphological features of the resultant films altered along with change in domain thickness. The phase images showed position and distribution of the brightest clay stacks in the dark‐bright contrast of the base matrix of the nanocomposite. Exfoliated and intercalated‐exfoliated morphology obtained in the case of Cloisite®20A and OC‐based SEBS nanocomposites, respectively, is further supported by X‐ ray diffraction and transmission electron microscopy studies. The lamellar thickness of the soft phases widened to 50–75 nm, where the layered clay silicates (40–54 nm in length and 4–17 nm in width) were embedded in the soft rubbery phases in the block copolymeric matrix of the nanocomposite. The marginally thicker width of the hard styrenic phases and slightly shrinked width of the soft rubbery lamella can be observed from the regions where no nanofiller is present. Distinct differences in bulk morphologies of the nanocomposites prepared in the melt and the solution processes were obtained with nanocomposites. The presence of clay particles was evident from the almost zero pull‐off and snap‐in force in the force‐distance analysis of SEBS based nanocomposite. This analysis also revealed stronger tip interaction resulting in highest contact and adhesive forces with the softer PEB region relative to the harder PS region. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 52–66, 2007  相似文献   

6.
By merit of dual catalysis of the cationic rare‐earth complex [(η5‐Flu‐CH2‐Py)Ho(CH2SiMe3)2(THF) (Flu = fluorenyl, Py = pyridyl) for the living polymerizations of butadiene (BD) and styrene (St), the crystalline styrene‐butadiene‐styrene (SBS) triblock copolymers consisting of elastic polybutadiene (PBD) sequences with suitable 1,4 regularity (about 70%) and crystalline syndiotactic polystyrene (sPS, [rrrr] > 99%) sequences were successfully synthesized through sequential addition of St, BD, and St monomers. The catalytic system showed high polymerization activities for St and BD in a controlled manner. The crystalline styrene‐b‐(ethylene‐co‐butylene)‐b‐styrene (SEBS) triblock copolymers were obtained by hydrogenation of the above SBS copolymers. The observation of a strong endothermic peak at 266 °C in their differential scanning calorimetry (DSC) curves confirmed the existence of the sPS blocks in the crystalline SEBS different from the industrial product Kraton SEBS‐1652. Thermal degradation temperature of the crystalline SEBS (418 ± 2 °C) indicated the well thermostability and process window of this polymer. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 55, 1243–1249  相似文献   

7.
Cationic emulsions of triblock copolymer particles comprising a poly(n‐butyl acrylate) (PnBA) central block and polystyrene (PS) outer blocks were synthesized by activator generated by electron transfer (AGET) atom transfer radical polymerization (ATRP). Difunctional ATRP initiator, ethylene bis(2‐bromoisobutyrate) (EBBiB), was used as initiator to synthesize the ABA type poly(styrene‐bn‐butyl acrylate‐b‐styrene) (PS‐PnBA‐PS) triblock copolymer. The effects of ligand and cationic surfactant on polymerizations were also discussed. Gel permeation chromatography (GPC) was used to characterize the molecular weight (Mn) and molecular weight distribution (MWD) of the resultant triblock copolymers. Particle size and particle size distribution of resulted latexes were characterized by dynamic light scattering (DLS). The resultant latexes showed good colloidal stability with average particle size around 100–300 nm in diameter. Glass transition temperature (Tg) of copolymers was studied by differential scanning calorimetry (DSC). © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 611–620  相似文献   

8.
A series of well‐defined poly[methyl(3,3,3‐trifluoropropyl)siloxane]‐b‐polystyrene‐b‐poly(tert‐butyl acrylate) (PMTFPS‐b‐PS‐b‐PtBA) triblock copolymers were prepared by a combination of anionic ring‐opening polymerization of 1,3,5‐trimethyl‐1,3,5‐tris(3′,3′,3′‐trifluoropropyl)cyclotrisiloxane (F3), and atom transfer radical polymerization (ATRP) of styrene (St) and tert‐butyl acrylate (tBA), using the obtained α‐bromoisobutyryl‐terminal PMTFPS (PMTFPS‐Br) as the macroinitiators. The ATRP of St from PMTFPS‐Br, as well as the ATRP of tBA from the obtained PMTFPS‐b‐PS‐Br macroinitiators, has typical characteristic of controlled/living polymerization. The results of contact angle measurements for the films of PMTFPS‐b‐PS‐b‐PtBA triblock copolymers demonstrate that the compositions have an effect on the wetting behavior of the copolymer films. For the copolymer films with different compositions, there may be different macroscale or nanoscale structures on the outmost layer of the copolymer surfaces. The films with high content of PtBA blocks exhibit almost no ordered microstructures on the outmost layer of the copolymer surfaces, even though they have microphase‐separated structures in bulk. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

9.
The effect of the triblock copolymer poly[styrene‐b‐(ethylene‐co‐butylene)‐b‐styrene] (SEBS) on the formation of the space charge of immiscible low‐density polyethylene (LDPE)/polystyrene (PS) blends was investigated. Blends of 70/30 (wt %) LDPE/PS were prepared through melt blending in an internal mixer at a blend temperature of 220 °C. The amount of charge that accumulated in the 70% LDPE/30% PS blends decreased when the SEBS content increased up to 10 wt %. For compatibilized and uncompatibilized blends, no significant change in the degree of crystallinity of LDPE in the blends was observed, and so the effect of crystallization on the space charge distribution could be excluded. Morphological observations showed that the addition of SEBS resulted in a domain size reduction of the dispersed PS phase and better interfacial adhesion between the LDPE and PS phases. The location of SEBS at a domain interface enabled charges to migrate from one phase to the other via the domain interface and, therefore, resulted in a significant decrease in the amount of space charge for the LDPE/PS blends with SEBS. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2813–2820, 2004  相似文献   

10.
Tetrakis bromomethyl benzene was used as a tetrafunctional initiator in the synthesis of four‐armed star polymers of methyl methacrylate via atom transfer radical polymerization (ATRP) with a CuBr/2,2 bipyridine catalytic system and benzene as a solvent. Relatively low polydispersities were achieved, and the experimental molecular weights were in agreement with the theoretical ones. A combination of 2,2,6,6‐tetramethyl piperidine‐N‐oxyl‐mediated free‐radical polymerization and ATRP was used to synthesize various graft copolymers with polystyrene backbones and poly(t‐butyl methacrylate) grafts. In this case, the backbone was produced with a 2,2,6,6‐tetramethyl piperidine‐N‐oxyl‐mediated stable free‐radical polymerization process from the copolymerization of styrene and p‐(chloromethyl) styrene. This polychloromethylated polymer was used as an ATRP multifunctional initiator for t‐butyl methacrylate polymerization, giving the desired graft copolymers. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 650–655, 2001  相似文献   

11.
A series of well‐defined double hydrophilic graft copolymers, consisting of poly(N‐isopropylacrylamide)‐b‐poly(ethyl acrylate) (PNIPAM‐b‐PEA) backbone and poly(2‐(diethylamino)ethyl methacrylate) (PDEA) side chains, were synthesized by successive atom transfer radical polymerization (ATRP). The backbone was firstly prepared by sequential ATRP of N‐isopropylacrylamide and 2‐hydroxyethyl acrylate at 25 °C using CuCl/tris(2‐(dimethylamino)ethyl)amine as catalytic system. The obtained diblock copolymer was transformed into macroinitiator by reacting with 2‐chloropropionyl chloride. Next, grafting‐from strategy was employed for the synthesis of poly(N‐isopropylacrylamide)‐b‐[poly(ethyl acrylate)‐g‐poly(2‐(diethylamino)ethyl methacrylate)] (PNIPAM‐b‐(PEA‐g‐PDEA)) double hydrophilic graft copolymer. ATRP of 2‐(diethylamino)ethyl methacrylate was initiated by the macroinitiator at 40 °C using CuCl/hexamethyldiethylenetriamine as catalytic system. The molecular weight distributions of double hydrophilic graft copolymers kept narrow. Thermo‐ and pH‐responsive micellization behaviors were investigated by fluorescence spectroscopy, 1H NMR, dynamic light scattering, and transmission electron microscopy. Unimolecular micelles with PNIPAM‐core formed in acidic environment (pH = 2) with elevated temperature (≥32 °C); whereas, the aggregates turned into vesicles in basic surroundings (pH ≥ 7.2) at room temperature. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5638–5651, 2008  相似文献   

12.
Graft copolymers comprising poly(vinylidene fluoride‐co‐chlorotrifluoroethylene) backbone and poly(styrene sulfonic acid) side chains, i.e. P(VDF‐co‐CTFE)‐g‐PSSA were synthesized using atom transfer radical polymerization (ATRP) for composite nanofiltration (NF) membranes. Direct initiation of the secondary chlorinated site of CTFE units facilitates grafting of PSSA, as revealed by FT‐IR spectroscopy. The successful “grafting from” method and the microphase‐separated structure of the graft copolymer were confirmed by transmission electron microscopy (TEM). Wide angle X‐ray scattering (WAXS) also showed the decrease in the crystallinity of P(VDF‐co‐CTFE) upon graft copolymerization. Composite NF membranes were prepared from P(VDF‐co‐CTFE)‐g‐PSSA as a top layer coated onto P(VDF‐co‐CTFE) ultrafiltration support membrane. Both the rejections and the flux of composite membranes increased with increasing PSSA concentration due to the increase in SO3H groups and membrane hydrophilicity, as supported by contact angle measurement. The rejections of NF membranes containing 47 wt% of PSSA were 83% for Na2SO4 and 28% for NaCl, and the solution flux were 18 and 32 L/m2 hr, respectively, at 0.3 MPa pressure. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
A series of novel amphiphilic brush‐dendritic‐linear poly[poly(ethylene glycol) methyl ether methacrylate]‐b‐polyamidoamine‐b‐poly(ε‐caprolactone) copolymers (PPEGMEMA‐b‐Dmb‐PCL) (m = 1, 2, and 3: the generation number of dendron) were synthesized by the combination techniques of click chemistry, atom transfer radical polymerization (ATRP), and ring‐opening polymerization (ROP). The brush‐dendritic copolymers bearing hydrophilic brush PPEGMEMA and hydrophobic dendron polyamidoamine protected by the tert‐butoxycarbonyl (Boc) groups [Dm‐(Boc) (m = 1, 2, and 3)] were for the first time prepared by ATRP of poly(ethylene glycol) methyl ether methacrylate monomer (PEGMEMA) initiated with the dendron initiator, which was prepared from 2′‐azidoethyl‐2‐bromoisobutyrate (AEBIB) and Dm‐(Boc) terminated with a clickable alkyne by click chemistry. Then, the brush‐dendritic copolymers with primary amine groups (PPEGMEMA‐b‐Dm) were obtained from the removal of the protected Boc groups of the brush‐dendritic copolymers in the presence of trifluoroacetic acid. The brush‐dendritic‐linear PPEGMEMA‐b‐Dmb‐PCL copolymers were synthesized from ROP of ε‐caprolactone monomer using PPEGMEMA‐b‐Dm as the macroinitiators and stannous octoate as catalyst in toluene at 130 °C. To the best of our knowledge, this is the first report that integrates hydrophilic brush polymer PPEGMEMA with hydrophobic polyamidoamine (PAMAM) dendron and PCL to form amphiphilic brush‐dendritic‐linear copolymers. The amphiphilic brush‐dendritic‐linear copolymers can self‐assemble into spherical micellar structures in aqueous solution. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

14.
Diblock copolymers of poly(ethylene‐co‐butylene) and polystyrene or poly(4‐acetoxystyrene) are synthesized by atom transfer radical polymerization (ATRP) using a 2‐bromopropionic ester macroinitiator prepared from commercial monohydroxyl functional narrow dispersity hydrogenated polybutadiene (Kraton Liquid Polymer, L‐1203). ATRP carried out in bulk and in xylene solution with cuprous bromide and two different complexing agents 2,2′‐bipyridine (bipy) and 1,1,4,7,10,10‐hexamethyltriethylenetetraamine (HMTETA) yielded well‐defined diblock copolymers with polydispersities around 1,3. The diblock copolymer with poly(4‐acetoxystyrene) was hydrolyzed to the corresponding poly(4‐hydroxystyrene) sequence.  相似文献   

15.
A new stratagem for the synthesis of amphiphilic graft copolymers of hydrophilic poly(ethylene oxide) as the main chain and hydrophobic polystyrene as the side chains is suggested. A poly(ethylene oxide) with pending 2,2,6,6‐tetramethylpiperidine‐1‐oxyls [poly(4‐glycidyloxy‐2,2,6,6‐tetramethylpiperidine‐1‐oxyl‐co‐ethylene oxide)] was first prepared by the anionic ring‐opening copolymerization of ethylene oxide and 4‐glycidyloxy‐2,2,6,6‐tetramethylpiperidine‐1‐oxyl, and then the graft copolymerization of styrene was completed with benzoyl peroxide as the initiator in the presence of poly(4‐glycidyloxy‐2,2,6,6‐tetramethylpiperidine‐1‐oxyl‐co‐ethylene oxide). The polymerization of styrene was under control, and comblike, amphiphilic poly(ethylene oxide)‐g‐polystyrene was obtained. The copolymer and its intermediates were characterized with size exclusion chromatography, 1H NMR, and electron spin resonance in detail. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3836–3842, 2006  相似文献   

16.
Cationic polymerization of tetrahydrofuran (THF) and epichlorohydrin (ECH) was performed with peroxy initiators synthesized from bis (4,4′‐bromomethyl benzoyl peroxide (BBP) or bromomethyl benzoyl t‐butyl peroxy ester (t‐BuBP) and AgSbF6 or ZnCl2 system at 0 °C to obtain the poly(THF‐b‐ECH) macromonomeric peroxy initiators. Kinetic studies were accomplished for poly(THF‐b‐ECH) initiators. Poly(THF‐b‐ECH‐b‐MMA) and poly(THF‐b‐ECH‐b‐S) block copolymers were synthesized by bulk polymerization of methyl methacrylate (MMA) and styrene (S) with poly(THF‐b‐ECH) initiators. The quantum chemical calculations for the block copolymers, the initiating systems of the cationic polymerization of THF and ECH were achieved using HYPERCHEM 7.5 program. The optimized geometries of the polymers were investigated with the quantum chemical calculations. Poly(THF‐b‐ECH) initiators having peroxygen groups were used for graft copolymerization of polybutadien (PBd) to obtain poly(THF‐b‐ECH‐g‐PBd) crosslinked graft copolymers. The graft copolymers were investigated by sol‐gel analysis. Swelling ratio values of the graft copolymers in CHCl3 were calculated. The characterizations of the polymers were achieved by FTIR, 1H NMR, GPC, SEM, TEM, and DSC techniques. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2896–2909, 2010  相似文献   

17.
A dual initiator (4‐hydroxy‐butyl‐2‐bromoisobutyrate), that is, a molecule containing two functional groups capable of initiating two polymerizations occurring by different mechanisms, has been prepared. It has been used for the sequential two‐step synthesis of well‐defined block copolymers of polystyrene (PS) and poly(tetrahydrofuran) (PTHF) by atom transfer radical polymerization (ATRP) and cationic ring‐opening polymerization (CROP). This dual initiator contains a bromoisobutyrate group, which is an efficient initiator for the ATRP of styrene in combination with the Cu(0)/Cu(II)/N,N,N,N,N″‐pentamethyldiethylenetriamine catalyst system. In this way, PS with hydroxyl groups (PS‐OH) is formed. The in situ reaction of the hydroxyl groups originating from the dual initiator with trifluoromethane sulfonic anhydride gives a triflate ester initiating group for the CROP of tetrahydrofuran (THF), leading to PTHF with a tertiary bromide end group (PTHF‐Br). PS‐OH and PTHF‐Br homopolymers have been applied as macroinitiators for the CROP of THF and the ATRP of styrene, respectively. PS‐OH, used as a macroinitiator, results in a mixture of the block copolymer and remaining macroinitiator. With PTHF‐Br as a macroinitiator for the ATRP of styrene, well‐defined PTHF‐b‐PS block copolymers can be prepared. The efficiency of PS‐OH or PTHF‐Br as a macroinitiator has been investigated with matrix‐assisted laser desorption/ionization time‐of‐flight spectroscopy, gel permeation chromatography, and NMR. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3206–3217, 2003  相似文献   

18.
A series of well‐defined ferrocene‐based amphiphilic graft copolymers, consisting of poly(N‐isopropylacrylamide)‐b‐poly(ethyl acrylate) (PNIPAM‐b‐PEA) backbone and poly(2‐acryloyloxyethyl ferrocenecarboxylate) (PAEFC) side chains, were synthesized by the combination of single‐electron‐transfer living radical polymerization (SET‐LRP) and atom transfer radical polymerization (ATRP). A new ferrocene‐based monomer, 2‐(acryloyloxy)ethyl ferrocenecarboxylate (AEFC), was prepared first and it can be polymerized via ATRP in a controlled way using methyl 2‐bromopropionate as initiator and CuBr/PMDETA as catalytic system in DMF at 40 °C. PNIPAM‐b‐PEA backbone was synthesized by sequential SET‐LRP of NIPAM and HEA at 25 °C using CuCl/Me6TREN as catalytic system followed by the transformation into the macroinitiator by treating the pendant hydroxyls with α‐bromoisobutyryl bromide. The targeted well‐defined graft copolymers with narrow molecular weight distributions (Mw/Mn < 1.20) were synthesized via ATRP of AEFC initiated by the macroinitiator. The electro‐chemical behaviors of PAEFC homopolymer and PNIPAM‐b‐(PEA‐g‐PAEFC) graft copolymer were studied by cyclic voltammetry. Micellar properties of PNIPAM‐b‐(PEA‐g‐PAEFC) were investigated by transmission electron microscopy and dynamic light scattering. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4346–4357, 2009  相似文献   

19.
A new graft copolymer, poly(2‐hydroxyethyl methacrylate‐co‐styrene) ‐graft‐poly(?‐caprolactone), was prepared by combination of reversible addition‐fragmentation chain transfer polymerization (RAFT) with coordination‐insertion ring‐opening polymerization (ROP). The copolymerization of styrene (St) and 2‐hydroxyethyl methacrylate (HEMA) was carried out at 60 °C in the presence of 2‐phenylprop‐2‐yl dithiobenzoate (PPDTB) using AIBN as initiator. The molecular weight of poly (2‐hydroxyethyl methacrylate‐co‐styrene) [poly(HEMA‐co‐St)] increased with the monomer conversion, and the molecular weight distribution was in the range of 1.09 ~ 1.39. The ring‐opening polymerization (ROP) of ?‐caprolactone was then initiated by the hydroxyl groups of the poly(HEMA‐co‐St) precursors in the presence of stannous octoate (Sn(Oct)2). GPC and 1H‐NMR data demonstrated the polymerization courses are under control, and nearly all hydroxyl groups took part in the initiation. The efficiency of grafting was very high. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5523–5529, 2004  相似文献   

20.
Polysulfone‐g‐poly(N‐isopropylacrylamide) (PSf‐g‐PNIPAAm) graft copolymers were prepared from atom transfer radical polymerization of NIPAAm using chloromethylated PSf as a macro‐initiator. The chain lengths of PNIPAAm of the graft copolymers were controllable with polymerization reaction time. The chemical structures of the graft copolymers were characterized with FTIR, NMR, and elemental analysis and their amphiphilic characteristics were examined and discussed. The PSf‐g‐PNIPAAm graft copolymers and the nanoparticles made from the graft copolymers exhibited repeatable temperature‐responsive properties in heating–cooling cycles. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4756–4765, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号