首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cationic ring‐opening polymerization of a seven‐membered cyclic monothiocarbonate, 1,3‐dioxepan‐2‐thione, produced a soluble polymer through the selective isomerization of thiocarbonyl to a carbonyl group {? [SC(C?O)O(CH2)4]n? }. The molecular weights of the polymer could be controlled by the feed ratio of the monomer to the initiators or the conversion of the monomer during the polymerization, although some termination reactions occurred after the complete consumption of the monomer. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1014–1018, 2005  相似文献   

2.
This work deals with the synthesis and cationic ring‐opening polymerization behavior of a novel five‐membered cyclic thiocarbonate bearing a spiro‐linked adamantane moiety, tricyclo[3.3.1.13,7]decane‐2‐spiro‐4′‐(1′,3′‐dioxolane‐2′‐thione) ( TC2 ). The cationic ring‐opening polymerization of TC2 did not proceed with trifluoromethanesulfonic acid, methyl trifluoromethanesulfonate, triethyloxonium tetrafluoroborate (Et3OBF4), boron trifluoride etherate (BF3OEt2), titanium tetrachloride, or methyl iodide as the initiator, presumably because of the steric hindrance of the adamantane moiety. However, the cationic ring‐opening copolymerization of TC2 with five‐ or six‐membered cyclic thiocarbonates, that is, 1,3‐dioxolane‐2‐thione, 1,3‐dioxane‐2‐thione, 5‐methyl‐1,3‐dioxane‐2‐thione, or 5,5‐dimethyl‐1,3‐dioxane‐2‐thione, initiated by BF3OEt2 or Et3OBF4, proceeded to afford the corresponding copolymer via a selective ring‐opening direction. The increase in the feed ratio of TC2 in the copolymerization increased the unit ratio derived from TC2 in the copolymer; however, the molecular weight of the copolymer decreased. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 699–707, 2003  相似文献   

3.
This work deals with the cationic ring‐opening polymerization of the ester‐substituted cyclic carbonates 5‐methyl‐5‐benzoyloxymethyl‐1,3‐dioxan‐2‐one ( CC1 ) and 4‐benzoyloxymethyl‐1,3‐dioxan‐2‐one ( CC4 ). The polymerization was carried out with trifluoromethanesulfonic acid, methyl trifluoromethanesulfonate, boron trifluoride etherate, or methyl iodide as the initiator. The reactivity of CC1 and CC4 was higher than that of 5,5‐dimethyl‐1,3‐dioxan‐2‐one, which had no ester moiety. These results suggest that this ring‐opening polymerization was accelerated by the intramolecular ester group. CC1 showed a higher polymerizability than CC4 , affording a polymer with a higher molecular weight. Additionally, using methyl iodide as the initiator was effective for increasing the molecular weight of the obtained polycarbonate and decreasing decarboxylation. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1305–1317, 2001  相似文献   

4.
This work deals with the cationic ring‐opening polymerization of the cyclic thiocarbonates 5‐benzoyloxymethyl‐5‐methyl‐1,3‐dioxane‐2‐thione ( 1 ), 5,5‐dimethyl‐1,3‐dioxane‐2‐thione ( 2 ), and 4‐benzoyloxymethyl‐1,3‐dioxane‐2‐thione ( 3 ). The polymerization was carried out with 2 mol % trifluoromethanesulfonic acid, methyl trifluoromethanesulfonate, boron trifluoride etherate, or triethyloxonium tetrafluoroborate as the initiator to afford the polythiocarbonate with a narrow molecular weight distribution accompanying isomerization of the thiocarbonate group. The molecular weight of the obtained polymer could be controlled by the feed ratio of the monomer to the initiator and increased when the second monomer was added to the polymerization mixture after the quantitative consumption of the monomer in the first stage. The block copolymerization of 2 and 3 was also achieved, and this supported the idea that the cationic ring‐opening polymerization of these monomers proceeded via a living process. The order of the polymerization rate was 3 > 2 > 1 . The cationic ring‐opening polymerization of 1 and 3 involved the neighboring group participation of ester groups according to the polymerization rate and molecular orbital calculations with the ab initio method. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 185–195, 2003  相似文献   

5.
The radical ring‐opening polymerization (RROP) behavior of the following monomers is reviewed, and the possibility for application to functional materials is described: cyclic disulfide, bicyclobutane, vinylcyclopropane, vinylcyclobutane, vinyloxirane, vinylthiirane, 4‐methylene‐1,3‐dioxolane, cyclic ketene acetal, cyclic arylsulfide, cyclic α‐oxyacrylate, benzocyclobutene, o‐xylylene dimer, exo‐methylene‐substituted spiro orthocarbonate, exo‐methylene‐substituted spiro orthoester, and vinylcyclopropanone cyclic acetal. RROP is a promising candidate for producing a wide variety of environmentally friendly functional polymers. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 265–276, 2001  相似文献   

6.
7.
8.
Amino acid‐derived novel norbornene derivatives, N,N′‐(endo‐bicyclo[2.2.1] hept‐5‐en‐2,3‐diyldicarbonyl) bis‐L ‐alanine methyl ester (NBA), N,N′‐(endo‐bicyclo[2.2.1]hept‐5‐en‐2,3‐diyldicarbonyl) bis‐L ‐leucine methyl ester (NBL), N,N′‐(endo‐bicyclo[2.2.1]hept‐5‐en‐2,3‐diyldicarbonyl) bis‐L ‐phenylalanine methyl ester (NBF) were synthesized and polymerized using the Grubbs 2nd generation ruthenium (Ru) catalyst. Although NBA, NBL, and NBF did not undergo homopolymerization, they underwent copolymerization with norbornene (NB) to give the copolymers with Mn ranging from 5200 to 38,100. The maximum incorporation ratio of the amino acid‐based unit was 9%, and the cis contents of the main chain were 54–66%. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5337–5343, 2006  相似文献   

9.
A five‐membered cyclic dithiocarbonate having phenylcarbamate moiety 1 underwent cationic ring‐opening polymerization by using methyl trifluoromethanesulfonate as an initiator in nitrobenzene at 60 °C. Both of the corresponding first‐order kinetic plot and conversion‐molecular weight plot showed linearity to suggest the living fashion of the polymerization, which was then supported by two‐stage polymerization experiment. The living fashion as well as the regioselective formation of the repeating unit suggested significant contribution of the neighboring group participation of the carbamate group to form a stabilized cationic propagating end, of which structure was confirmed by performing an equimolar reaction of 1 and methyl trifluoromethanesulfonate with analyzing the resulting species by NMR spectroscopy. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4459–4464, 2007  相似文献   

10.
This study describes the application of the electrochemically generated molybdenum‐based catalyst system MoCl5? e?? Al? CH2Cl2 to ring‐opening metathesis polymerization of bicyclo[2.2.1]hept‐2‐ene (norbornene). The results are compared with those previously obtained by the WCl6? e?? Al? CH2Cl2 system. The polymer product has been characterized by 1H and 13C NMR, IR and gel‐permeation chromatography techniques. This molybdenum‐based catalyst system has led to a mainly trans stereoconfiguration (ca 60%) of the double bonds, in contrast to the polymer obtained with the tungsten‐based analogue, where the cis content is 60%. Analysis of the poly(1,3‐cyclopentylenevinylene) microstructure by 13C NMR spectroscopy revealed that the polymer having σc = 0.41 (fraction of double bonds with cis configuration) contains a slightly blocky distribution (rtrc > 1) of the double‐bond dyads (rtrc = 1.44). In addition, the influence of reaction parameters, e.g. reaction time, electrolysis time and catalyst aging time, on conversion has been analysed in detail. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
Cationic ring‐opening polymerization of ϵ‐thionocaprolactone was examined. The corresponding polythioester with the number‐average molecular weight (Mn ) of 57,000 was obtained in the polymerization with 1 mol % of BF3 · OEt2 as an initiator in CH2Cl2 at 28 °C for 5 h with quantitative monomer conversion. The Mn of the polymer increased with the solvent polarity and monomer‐to‐initiator ratio. No polymerization took place below −30 °C, and the monomer conversion and Mn of the polymer increased with the temperature in the range of −15 to 28 °C. The increase of initial monomer concentration was effective to improve the monomer conversion and the Mn of the obtained polymer. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4057–4061, 2000  相似文献   

12.
This article proposes the first report on the synthesis of nanometric crosslinked polynorbornene particles by ring‐opening metathesis polymerization in dispersion using ruthenium‐based complex (PCy3)2Cl2Ru?CHPh as initiator. Stable but raspberry‐shaped particles were obtained. In this study, a particular attention was paid to the influence of the crosslinker nature and addition mode on reaction kinetics and morphology of the latex particles. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

13.
The tendencies of ring‐opening processes in radical ring‐opening polymerizations were evaluated by AM1 and PM3 semi‐empirical calculations and 6‐31G*‐level calculations based on the density functional theory (DFT) B3LYP models. Sixteen cyclic monomers bearing vinyl or exomethylene groups were categorized into ring‐opening and no‐ring‐opening monomers by the evaluation of the differences of the internal energies and the lengths of the cleaving bonds between the ground states of the initial radicals and the activated states in the ring‐opening processes. Although the semi‐empirical calculations not parameterized to radical reactions resulted in the moderate categorization of the ring‐opening monomers, the DFT calculation clearly distinguished the ring‐opening and no‐ring‐opening monomers. The ring‐opening tendencies were also evaluated with the changes in the internal energies throughout the ring‐opening processes, but this method could not group the ring‐opening and no‐ring‐opening monomers clearly. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2827–2834, 2007  相似文献   

14.
Pseudo block and triblock copolymers were synthesized by the cationic ring‐opening copolymerization of 1,5,7,11‐tetraoxaspiro[5.5]undecane (SOC1) with trimethylene oxide (OX) via one‐shot and two‐shot procedures, respectively. When SOC1 and OX were copolymerized cationically with boron trifluoride etherate (BF3OEt2) as an initiator in CH2Cl2 at 25 °C, OX was consumed faster than SOC1. SOC1 was polymerized from the OX‐rich gradient copolymer produced in the initial stage of the copolymerization to afford the corresponding pseudo block copolymer, poly [(OX‐grad‐SOC1)‐b‐SOC1]. We also succeeded in the synthesis of a pseudo triblock copolymer by the addition of OX during the course of the polymerization of SOC1 before its complete consumption, which provided the corresponding pseudo triblock copolymer, poly[SOC1‐b‐(OX‐grad‐SOC1)‐b‐SOC1]. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3233–3241, 2006  相似文献   

15.
The anionic ring‐opening polymerization of a five‐membered cyclic urethane, 2‐amino‐4,6‐O‐benzylidene‐2‐N,3‐O‐carbonyl‐2‐deoxy‐α,d ‐glucopyranoside (MBUG), which was prepared from naturally abundant d ‐glucosamine, was examined. Potassium tert‐butoxide (t‐BuOK) was the most effective initiator among the evaluated bases and produced polyurethane with the Mn of 7800 without any elimination of CO2. The equimolar reaction of MBUG and t‐BuOK in the presence of CH3I produced N‐methylated MBUG and suggested that the initiation reaction involves proton abstraction from the NH group. This N‐methylated compound did not undergo the polymerization. Therefore, the mechanism of propagation in the ROP of MBUG should involve the proton abstraction and nucleophilic substitution of the resulting amide anion. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 2491–2497  相似文献   

16.
Anionic ring‐opening polymerizations of methyl 4,6‐O‐benzylidene‐2,3‐O‐carbonyl‐α‐D ‐glucopyranoside (MBCG) were investigated using various anionic polymerization initiators. Polymerizations of the cyclic carbonate readily proceeded by using highly active initiators such as n‐butyllithium, lithium tert‐butoxide, sodium tert‐butoxide, potassium tert‐butoxide, and 1,8‐diazabicyclo[5.4.0]undec‐7‐ene, whereas it did not proceed by using N,N‐dimethyl‐4‐aminopyridine and pyridine as initiators. In a polymerization of MBCG (1.0 M), 99% of MBCG was converted within 30 s to give the corresponding polymer with number‐averaged molecular weight (Mn) of 16,000. However, the Mn of the polymer decreased to 7500 when the polymerization time was prolonged to 24 h. It is because a backbiting reaction might occur under the polymerization conditions. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

17.
The cationic ring‐opening multibranching polymerization of 2‐hydroxymethyloxetane ( 1 ) as a novel latent AB2‐type monomer was carried out using trifluoromethane sulfonic acid or trifluoroboron diethyl etherate by a slow‐monomer‐addition (SMA) method. The polymer yield of poly‐1 ranged from ca. 58–88%, which increase with the increasing monomer addition time on the SMA method. The absolute molecular weights (Mw,MALLS) and the polydispersities of poly‐1 were in the range of 8,000–43,500 and 1.45–4.53, respectively, which also increased with the increasing monomer addition time. The Mark‐Houwink‐Sakurada exponents α in 0.2 M NaNO3 aq. were determined to be 0.02–0.25 for poly‐1 , indicating that poly‐1 has compact forms in the solution because of the highly branched structure. The degree of the branching value of poly‐1 , which was calculated by Frey's equation, ranged from ca. 0.50 to 0.58, which increased with the increasing monomer addition time. The steady shear flow of poly‐1 in aqueous solution exhibited a Newtonian behavior with steady shear viscosities independent of the shear rate. The results of the MALLS, NMR, and viscosity measurements indicated that poly‐1 is composed of a highly branched structure, i.e., the hyperbranched poly (2‐hydroxymethyloxetane). © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

18.
Cationic ring‐opening polymerizations of 5‐alkyl‐ or 5,7‐dialkyl‐1,3‐dehydroadamantanes, such as 5‐hexyl‐ ( 4 ), 5‐octyl‐ ( 5 ), 5‐butyl‐7‐isobutyl‐ ( 6 ), 5‐ethyl‐7‐hexyl‐ ( 7 ), and 5‐butyl‐7‐hexyl‐1,3‐dehydroadamantane ( 8 ), were carried out with super Brønsted acids, such as trifluoromethanesulfonic acid or trifluoromethanesulfonimide in CH2Cl2 or n‐heptane. The ring‐opening polymerizations of inverted carbon–carbon bonds in 4–8 proceeded to afford corresponding poly(1,3‐adamantane)s in good to quantitative yields. Poly( 4–8 )s possessing alkyl substituents were soluble in 1,2‐dichlorobenzene, although a nonsubstituted poly(1,3‐adamantane) was not soluble in any organic solvent. In particular, poly( 8 ) exhibited the highest molecular weight at around 7500 g mol?1 and showed excellent solubility in common organic solvents, such as THF, CHCl3, benzene, and hexane. The resulting poly( 4–8 )s containing adamantane‐1,3‐diyl linkages showed good thermal stability, and 10% weight loss temperatures (T10) were observed over 400 °C. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4111–4124  相似文献   

19.
A straightforward strategy for the synthesis and functionalization of polyurethanes (PUs) via the use of alkyne‐functionalized polytetrahydrofuran (PTHF) diols is described. The alkyne groups have been introduced into the PTHF chains by the cationic ring‐opening copolymerization of tetrahydrofuran and glycidyl propargyl ether. These PTHF prepolymers were combined with 1,4‐butanediol and hexamethylene diisocyanate for the synthesis of linear PUs with latent functionalization sites. The polyether segments of the PUs have then been coupled with several types of functionalized azides by the copper‐catalyzed azide‐alkyne “click” chemistry, for example with phosphonium containing azides for their antibacterial properties. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

20.
A new 2‐oxazolines containing S‐galactosyl substituents linked to alkyl chains of different lengths; (S‐glycooxazoline) were prepared relatively in high yields. By using a 1:1 adduct of 2‐methyl‐2‐oxazoline and methyl triflate, as the initiator, the monomer was polymerized via ring‐opening polymerization (ROP) to give products with relatively narrow molecular weight distributions. Homo‐ and copolymerization were performed, and the kinetics of these new S‐glycooxazolines in the ROP are investigated. After a quantitative deprotection, poly(2‐oxazoline)s having pendant carbohydrate were obtained. The interaction of the poly(S‐glycooxazoline) with RCA120 lectin was investigated, the binding constant between glycopolymer and lectin was increased by 102 times compared with that of the monosaccharide (D ‐galactose). The in vivo expression of green fluorescent protein using the synthesized poly(S‐glycooxazoline)s as polymeric inducers in Escherichia coli host were performed. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号