首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protoporphyrin IX and zinc protoporphyrin IX were grafted to the surface of nylon‐6,6 films via an ethylene diamine bridge and a poly(acrylic acid) (PAA) scaffold. X‐ray photoelectron spectroscopy showed that approximately 57% of the nylon surface was covered by PAA and approximately 6% of the carboxylic acid groups in PAA were grafted to the ethylene diamine derivative of protoporphyrin IX or its zinc salt. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 41–47, 2003  相似文献   

2.
The relationship between the contact angles, surface tension, and surface roughness is reviewed. Numerical formulas related to the superhydrophobic rough surfaces of polymers are predicted with two approaches, the Wenzel and Cassie–Baxter models. With these models as a guide, an artificial superhydrophobic surface is created. Rough nylon surfaces mimicking the lotus leaf are created by the coating of a polyester surface with nylon‐6,6 short fibers via the flocking process. Poly(acrylic acid) chains aregrafted onto nylon‐6,6 surfaces, and this is followed by the grafting of 1H,1H‐perfluorooctylamine onto the poly(acrylic acid) chains. Water contact angles as high as 178° are achieved. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 253–261, 2007.  相似文献   

3.
Two kinds of nylon 4 having an acyllactam group at one or both chain ends were synthesized by the anionic ring‐opening polymerization of 2‐pyrrolidone using N‐benzoyl‐2‐pyrrolidone (BP) or N,N′‐isophthaloylbis‐2‐pyrrolidone (IPP) and potassium tert‐butoxide as an initiator and a catalyst, respectively, and carefully isolated with the suppression of moisture adsorption. The acyllactam at one chain end in the low molecular weight of nylon 4 was quantitatively converted to other functional groups such as carboxy, amine and so on, which were confirmed by matrix‐assisted laser desorption/ionization time‐of‐flight (MALDI TOF) mass spectroscopy. Terminal acyllactam groups telechelating in the nylon 4 at both chain ends were also modified to carboxy and amino groups. From the thermogravimetric analysis (TGA), thermal decomposition point of the modified nylon 4 was increased in comparison with that of the original acyllactam‐type nylon 4, although the acyllactam chain end caused the backbiting depolymerization accompanied with the generation of 2‐pyrrolidone monomer. The direct heating of the acyllactam‐telechelic low molecular weight of nylon 4 mixed with the diamine in bulk also led to improve its thermal stability significantly by the chain extension through the polyaddition reaction. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

4.
A perfect single crystal of nylon‐2,14 was prepared from 0.02% (w/v) 1,4‐butanediol solution by a “self‐seeding” technique and isothermal crystallization at 120 and 145 °C. The morphology and structure features were examined by transmission electron microscopy with both image and diffraction modes, atomic force microscopy, and wide‐angle X‐ray diffraction (WAXD). The nylon‐2,14 single crystal grown from 1,4‐butanediol at 145 °C inhabited a lathlike shape with a lamellar thickness of about 9 nm. Electron diffraction and WAXD data indicated that nylon‐2,14 crystallized in a triclinic system with lattice dimensions a = 0.49 nm, b = 0.51 nm, c = 2.23 nm, α = 60.4°, β = 77°, and γ = 59°. The crystal structure is different from that of nylon‐6,6 but similar to that of other members of nylon‐2Y. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1913–1918, 2002  相似文献   

5.
Nylon 6 was reacted with trimellitic anhydride (TMA) at 230 °C so that a complete degradation to N‐(5‐carboxy‐pentamethylene) trimellitimide was obtained. The crude imide dicarboxylic acid was reacted in situ with 4,4′‐bisacetoxy biphenyl whereby an enantiotropic smectic polyesterimide was obtained. Analogous degradation and polycondensation reactions were also performed with nylon 11 and nylon 12. Parallel syntheses were conducted with isolated imide dicarboxylic acids. Furthermore, the crude imide dicarboxylic acid obtained from nylons 6, 11, and 12 were polycondensed in situ with diacetates of hydroquinone or substituted hydroquinone in combination with various amounts of acetoxy benzoic acid or 6‐acetoxy‐2‐naphthoic acid. In this way enantiotropic nematic copoly(ester‐imide)s were prepared. The phase transition of all LC‐poly(ester‐imide)s were characterized by DSC measurement and optical microscopy. In addition, a series of isotropic poly(ester‐imides)s was prepared using nonmesogenic bisphenols, such as bisphenol A, as comonomers. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1630–1638, 2000  相似文献   

6.
To improve the surface of carbon fiber, the grafting reaction of copolymer containing vinyl ferrocene (VFE) onto a carbon‐fiber surface by a ligand‐exchange reaction between ferrocene moieties of the copolymer and polycondensed aromatic rings of carbon fiber was investigated. The copolymer containing VFE was prepared by the radical copolymerization of VFE with vinyl monomers, such as methyl methacrylate (MMA) and styrene, using 2,2′‐azobisisobutyronitrile as an initiator. By heating the carbon fiber with poly(VFE‐co‐MMA) (number‐average molecular weight: 2.1 × 104) in the presence of aluminum chloride and aluminum powder, the copolymer was grafted onto the surface. The percentage of grafting reached 46.1%. On the contrary, in the absence of aluminum chloride, no grafting of the copolymer was observed. Therefore, it is considered that the copolymer was grafted onto the carbon‐fiber surface by a ligand‐exchange reaction between ferrocene moieties of the copolymer and polycondensed aromatic rings of carbon fiber. The molar number of grafted polymer chain on the carbon‐fiber surface decreased with increasing molecular weight of poly(VFE‐co‐MMA) because the steric hindrance of grafted copolymer on the carbon‐fiber surface increases with increasing molecular weight of poly(VFE‐co‐MMA). © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1868–1875, 2002  相似文献   

7.
New light‐activated antimicrobial materials with a potentially wide range of possible uses in civilian settings were synthesized by the grafting of protoporphyrin IX and zinc protoporphyrin IX to nylon fibers. These fibers were shown to be active against Staphylococcus aureus at light exposures of 10,000 lux and greater and against Escherichia coli at 60,000 lux. They were ineffective against both strains in the absence of light. At 40,000 lux, these fibers showed increased antimicrobial activity against S. aureus with increasing exposure time. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2297–2303, 2003  相似文献   

8.
The toughening effect of ethylene‐vinyl acetate rubbers (EVM) with maleated ethylene‐vinyl acetate copolymers (EVA‐g‐MAH) on the nylon 1010 was investigated. The addition of 5 phr (per hundred nylon 1010) EVM increased the elongation at break of nylon 1010 to a great extent. The notched Izod impact strength of nylon/EVM blends increased with increasing EVM content. Scanning electron microscope showed that the EVM particle size was around 0.5 μm when the EVM content was 5 phr and increased with increasing EVM content. After the addition of EVA‐g‐MAH to nylon/EVM (100/20) blend, the average diameter of EVM particles decreased from more than 1 μm to 0.5–0.6 μm. EVA‐g‐MAH could improve the adhesion between nylon 1010 and EVM. A sharp brittle‐ductile transition (BDT) was observed when the interparticle distance was about 0.2 μm, independent of the addition of EVA‐g‐MAH. The notched Izod impact strength of nylon/EVM blends at low temperatures was measured and the BDT shifted toward low temperatures with increasing EVM or EVA‐g‐MAH content. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 434–444, 2009  相似文献   

9.
Poly(amic acid)s (PAAs) having the high solution stability and transmittance at 365 nm for photosensitive polyimides have been developed. PAAs with a twisted conformation in the main chains were prepared from 2,2′,6,6′‐biphenyltetracarboxylic dianhydride (2,2′,6,6′‐BPDA) and aromatic diamines. Imidization of PAAs was achieved by chemical treatment using trifluoroacetic anhydride. Among them, the PAA derived from 2,2′,6,6′‐BPDA and 4,4′‐(1,3‐phenylenedioxy)dianiline was converted to the polyimide by thermal treatment. The heating at 300 °C under nitrogen did not complete thermal imidization of PAAs having glass‐transition temperatures (Tg)s higher than 300 °C to the corresponding PIs. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6385–6393, 2006  相似文献   

10.
Improvement of primer adhesion to thermoplastic olefins (TPOs) by surface modification with a low‐temperature cascade arc discharge‐air plasmas was investigated. Air plasma with a low‐temperature cascade arc plasma torch can be used for improving the primer adhesion to TPOs. Tape‐adhesion tests (ASTM 3359‐92a method) demonstrated this improvement with a rating of “0” for untreated TPOs and “5” for air plasma‐modified TPOs at certain plasma conditions even for aging at 60 °C and 80% relative humidity for 5 days. The adhesion to primer for the soft and flexible kind of TPOs (ETA‐3041c and ETA‐3101) was easily enhanced. The adhesion to primer for the hard and brittle TPOs (ETA‐3183) needs to optimize the plasma conditions to pass the wet‐adhesion test using air plasmas. To relate the surface characteristics of air plasma‐modified TPOs to adhesion performance with primer, the wettability and polarity of TPOs were evaluated by the contact‐angle measurements of primer and deionized water to TPOs. TPO surface morphology was evaluated using scanning electron microscopy. The surface composition was characterized with electron spectroscopy for chemical analysis. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 623–637, 2002; DOI 10.1002/polb.10122  相似文献   

11.
The uptake of water by nylon 6,6 [42DB Adipure (trade name of Dupont Canada Inc.)] at 100°C has been monitored by a combination of one-dimensional proton NMR spectroscopy, relaxation time (T1 and T2) measurements and proton microscopic NMR imaging techniques. The relaxation times of the water absorbed into the nylon matrix are very short at room temperature, (T2 < 1 ms and T1 ≈ 1 s) indicating that the water is located in a highly restricted environment and suggesting that strong interactions exist between the absorbed water and the polymer. The diffusion profiles measured at room temperature indicate that the diffusion of water into nylon 6,6 at 100°C is Case I Fickian diffusion. The spatial dependence of the T2 relaxation time constant and its variation with the water content was also examined. The results reveal that both T2 and T2* decrease toward the center of the sample in samples that have a concentration gradient of sorbed water. In fully saturated samples, no spatial dependence was observed. The overall values of T2 and T2* are also observed to increase as a function of exposure time. An evaluation of the desorption process at room temperature and at 100°C was performed. A continuous, exponentially decreasing solvent profile was observed for the desorption process which again indicates Case I Fickian kinetics. The exchange process of external bulk and atmospheric water with deuterium oxide (D2O) saturated nylon rods has also been studied using the microscopic imaging technique. © 1993 John Wiley & Sons, Inc.  相似文献   

12.
The nylon 1010/ethylene‐vinyl acetate rubber (EVM)/maleated ethylene‐vinyl acetate copolymers (EVA‐g‐MAH) ternary blends were prepared. The effect of EVM/EVA‐g‐MAH ratio on the toughness of blends was examined. A super tough nylon 1010 blends were obtained by the incorporation of both EVM and EVA‐g‐MAH. Impact essential work of fracture (EWF) model was used to characterize the fracture behavior of the blends. The nylon/EVM/EVA‐g‐MAH (80/15/5) blend had the highest total fracture energy at a given ligament length (5 mm) and the highest dissipative energy density among all the studied blends. Scanning electron microscopy images showed the EVM and EVA‐g‐MAH existed as spherical particles in nylon 1010 matrix and their size decreased gradually with increasing EVA‐g‐MAH content. Large plastic deformation was observed on the impact fracture surface of the nylon/EVM/EVA‐g‐MAH (80/15/5) blend and related to its high impact strength. Then with increasing EVA‐g‐MAH proportion, the matrix shear yielding of nylon/EVM/EVA‐g‐MAH blends became less obvious. EVM and EVA‐g‐MAH greatly increased the apparent viscosity of nylon 1010, especially at low shear rates. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 877–887, 2009  相似文献   

13.
The effects of nylon 6 matrix viscosity and a multifunctional epoxy interfacial modifier on the notched impact strength of the blends of nylon 6 with a maleic anhydride modified polyethylene‐octene elastomer/semi‐crystalline polyolefin blend (TPEg) were studied by means of morphological observation, and mechanical and rheological tests. Because the viscosity of the TPEg is much higher than that of nylon 6, an increase in the viscosity of nylon 6 reduces the viscosity mismatch between the dispersed phase and the matrix, and increases notched impact strength of the blends. Moreover, addition of 0.3 to 0.9 phr of the interfacial modifier leads to a finer dispersion of the TPEg and greatly improves the notched impact strength of the nylon 6/TPEg blends. This is because the multi‐epoxy interfacial modifier can react with nylon 6 and the maleated TPEg. The reaction with nylon 6 increases the viscosity of the matrix while the coupling reaction at the interface between nylon 6 and the maleated TPEg leads to better compatibilization. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2664–2672, 1999  相似文献   

14.
Isothermal and nonisothermal crystallization kinetics of nylon‐46 were investigated with differential scanning calorimetry. The equilibrium melting enthalpy and the equilibrium melting temperature of nylon‐46 were determined to be 155.58 J/g and 307.10 °C, respectively. The isothermal crystallization process was described by the Avrami equation. The lateral surface free energy and the end surface free energy of nylon‐46 were calculated to be 8.28 and 138.54 erg/cm2, respectively. The work of chain folding was determined to be 7.12 kcal/mol. The activation energies were determined to be 568.25 and 337.80 kJ/mol for isothermal and nonisothermal crystallization, respectively. A convenient method was applied to describe the nonisothermal crystallization kinetics of nylon‐46 by a combination of the Avrami and Ozawa equations. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1784–1793, 2002  相似文献   

15.
The surface structures of three kinds of poly(ethylene oxide)‐segmented nylon (PEO‐Ny) molten films were investigated using a scanning electron microscopy (SEM), an electron spectroscopy for a chemical analysis (ESCA), and a static secondary ion mass spectrometry (SSIMS). The PEO‐Ny's used were high semicrystalline PEO‐segmented poly(iminosebacoyliminohexamethylene) (PEO‐Ny610), low semicrystalline PEO‐segmented poly(iminosebacoylimino‐m‐xylene) (PEO‐NyM10), and amorphous PEO‐segmented poly(iminoisophthaloyliminomethylene‐1,3‐cyclohexylenemethylene) (PEO‐NyBI). SEM observations show that the surfaces of the PEO‐Ny610 and PEO‐NyM10 films are composed of spherulite, and that PEO‐NyBI film has a smooth surface. The results of ESCA and SSIMS exhibit the significant enrichments of PEO segment at the surfaces of all the films regardless of the crystallinity. The reason for the enrichment of PEO segment was discussed in terms of the surface tension of the corresponding homopolymers in the melting state. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1045–1056, 2000  相似文献   

16.
Large‐scale torsional actuation occurs in twisted fibers and yarns as a result of volume change induced electrochemically, thermally, photonically, and other means. A quantitative relationship between torsional actuation (stroke and torque) and volume change is here introduced. The analysis is based on experimental investigation of the effects of fiber diameter and inserted twist on the torsional stroke and torque measured when heating and cooling nylon 6 fibers over the temperature range of 26–62 °C. The results show that the torsional stroke depends only on the amount of twist inserted into the fiber and is independent of fiber diameter. The torque generated is larger in fibers with more inserted twist and with larger diameters. These results are successfully modeled using a single‐helix approximation of the twisted fiber structure. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1278–1286  相似文献   

17.
Structural studies and morphological features of a new family of linear, aliphatic even–even, X 34‐nylons, with X = 2, 4, 6, 8, 10, and 12, are investigated with X‐ray diffraction and electron microscopy. Solution‐grown crystals were obtained by isothermal crystallization from N,N‐dimethylformamide solutions. The thickness of lamellar‐like crystals was orders of magnitude less than the chain lengths of the polymer samples used, implying that the chains fold to form chain‐folded lamellae. The results bear a close resemblance, with the noticeable exception of 2 34‐nylon, to those reported for nylon 6 6 and other even–even nylon chain‐folded lamellar crystals. The basic structure of the straight‐stem lamellar core is similar to that of the classic nylon 6 6 triclinic α structure, and the chains tilt ≈42° relative to the lamellar normal. In the case of 2 34‐nylon, the structure resembles the 2 Y nylon series, and the chain tilt angle reduces to 36.6°. These combined results suggest that, even with a relatively low frequency of amide units along the backbone of these molecules, hydrogen bonding is still the dominant element in controlling the behavior, structure, and properties of these polymers. In addition, gels were prepared in concentrated sulfuric acid, and gel‐spun fibers were studied using X‐ray diffraction. The data are interpreted in terms of a modified nylon triclinic α structure that bears a resemblance to the structure of even–even nylons at elevated temperatures. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2685–2692, 2002  相似文献   

18.
The structure and morphology of a novel polyamide, nylon‐10,14, and its lamellar crystals from dilute solution were examined by transmission electron microscopy and wide‐angle X‐ray diffraction (WAXD). Both the electron‐diffraction pattern and WAXD data demonstrated that nylon‐10,14 adopts the structure of a triclinic lattice similar to that of the traditional nylon‐66 but with a corresponding increase of the c parameter to 3.23 nm. In addition, the thermal behavior of melt‐crystallized nylon‐10,14 was investigated by dynamic mechanical analysis (DMA) and differential scanning calorimetry (DSC). The glass‐transition temperature of nylon‐10,14 determined by the DMA data was 46.6°C. DSC indicated that the multiple melting behavior of isothermally crystallized nylon‐10,14 probably results from the melt and recrystallization mechanism. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1422–1427, 2003  相似文献   

19.
A detailed electron microscopy study of the structure and morphology of lamellar crystals of nylon 46 obtained by crystallization from solution has been carried out. Electron diffraction of crystals supported by X‐ray diffraction of their sediments revealed that they consist of a twinned crystal lattice made of hydrogen‐bonded sheets separated 0.376 nm and shifted along the a‐axis (H‐bond direction) with a shearing angle of 65°. The interchain distance within the sheets is 0.482 nm. These parameters are similar to those previously described for nylon 46 lamellar crystals grown at lower temperatures. A combined energy calculation and modeling simulation analysis of all possible arrangements for the crystal‐packing of nylon 46 chains, in fully extended conformation, was performed. Molecular mechanics calculations showed very small energy differences between α (alternating intersheet shearing) and β (progressive intersheet shearing) structures with energy minima for successive sheets sheared at approximately 1/6 c and 1/3 c. A mixed lattice composed of a statistical array of α and β structures with such sheet displacements was found to be fully compatible with experimental data and most appropriate to describe nylon 46 lamellar crystals. Annealing of the crystals at temperatures closely below the Brill transition induced enrichment in β structure and increased chain‐folding order. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 41–52, 2000  相似文献   

20.
The synthesis and the study of DC electrical transport properties (electrical conductivity, σ, and Seebeck coefficient, S) as a function of temperature of some recently synthesized nylon 6/12 copolymers with 0, 5, 10, 20, 30, and 50 wt % laurolactam (LL), respectively, are reported. Nylons were obtained by rotational molding via the anionic activated copolymerization of ε‐caprolactam and LL. As evidenced by XRD analyses, they are semicrystalline. The temperature dependences of σ and S are typical for polycrystalline semiconducting (p‐type) materials. The activation energy of electrical conduction lay in the range 0.79–1.22 eV, while the ratio of charge carrier mobilities ranged between 0.53 and 0.77. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 794–799, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号