首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new type of tetraimide‐dicarboxylic acid ( I ) was synthesized starting from the ring‐opening addition of m‐aminobenzoic acid, 4,4′‐oxydiphthalic anhydride, and 2,2‐bis[4‐(4‐aminophenoxy)phenyl]propane at a 2:2:1 molar ratio in N‐methyl‐2‐pyrrolidone (NMP), followed by cyclodehydration to the diacid I . A series of soluble and light‐colored poly(amide‐imide‐imide)s ( III a–j) was prepared by triphenyl phosphite‐activated polycondensation from I with various aromatic diamines ( II a–j). All films cast from N,N‐dimethylacetamide (DMAc) had cutoff wavelengths shorter than 390 nm (374–390 nm) and b* values between 25.26 and 43.61; these polymers were much lighter in color than the alternating trimellitimide series. All of the polymers were readily soluble in a variety of organic solvents such as NMP, DMAc, N,N‐dimethylformamide, dimethyl sulfoxide, and even in less polar m‐cresol and pyridine. Polymers III a–j afforded tough, transparent, and flexible films that had tensile strengths ranging from 96 to 118 MPa, elongations at break from 9 to 11%, and initial moduli from 2.0 to 2.5 GPa. The glass‐transition temperatures of the polymers were recorded at 240–268 °C. They had 10% weight loss at a temperature above 540 °C and left more than 55% residue even at 800 °C in nitrogen. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 707–718, 2002; DOI 10.1002/pola.10153  相似文献   

2.
A series of fully aromatic copolyesters based on p‐acetoxybenzoic acid (p‐ABA), hydroquinone diacetate (HQDA), terephthalic acid (TPA), and m‐acetoxybenzoic acid (m‐ABA) were prepared by a modified melt‐polycondensation reaction. The copolyesters were characterized by DSC, thermogravimetric analysis, 1H NMR, polarized optical microscopy, X‐ray diffraction, and intrinsic viscosity measurements. The copolyesters exhibited nematic liquid‐crystalline phases in a broad temperature range of about 150 °C, when the content of linear (p‐ABA, HQDA, and TPA) units was over 67 mol %. DSC analysis of the anisotropic copolyesters revealed broad endotherms associated with the nematic phases, and the melting or flow temperatures were found to be in the processable region. The flow temperatures and crystal‐to‐nematic and nematic‐to‐isotropic transitions depend on the type of linear monomer units, and these transitions increased as the content of the p‐ABA units increased, as compared to the HQDA/TPA units. When the content of the p‐ABA units increased, as compared to other linear units (HQDA and TPA), the intrinsic viscosity and degree of crystallinity of the copolyesters also increased, implying a higher reactivity for p‐ABA in the p‐ABA/HQDA/TPA/m‐ABA polymer system. The aromatic region in the 1H NMR spectra of the copolyesters containing equal molar compositions of p‐ABA, HQDA, and TPA units were sensitive to the sequence distribution of aromatic rings. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3263–3277, 2001  相似文献   

3.
A novel phosphorus‐containing thermotropic liquid crystalline copolyester with kinked unit named as poly(hydroxybenzate‐co‐DOPO‐benzenediol dihydrodipheyl ether terephthalate) (PHDDT) was synthesized successfully by melting transesterification from terephthalic acid (TPA), p‐hydroxybenzoic acid (p‐ABH), 2‐(6‐oxid‐6H‐dibenz(c, e) (1,2) oxaphosphorin 6‐yl)1,4‐benzenediol (DOPO‐HQ), and 4,4′‐dihydroxydiphenyl ether (DOP). The chemical structure, the mesophase behavior, and the thermal properties of the copolyesters were characterized by Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (1H, 13C, and 31P NMR), wide‐angle X‐ray diffraction, polarizing light microscopy (PLM), differential scanning calorimetry, thermogravimetric analysis, and dynamic mechanical analysis. Results suggested that PHDDTs exhibited the typical nematic mesophase that occurred at low temperatures and maintained in a broad temperature range from 230 °C to higher than 400 °C, and had low glass transition temperature ranging from 154.5 to 166.9 °C. The novel phosphorus‐containing thermotropic liquid crystalline copolyester will have a potential application in preparing various in situ reinforced polymer materials with excellent mechanical properties and flame retardancy. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4703–4709, 2009  相似文献   

4.
Polyamidation with phenyl dichlorophosphite (PDCP) as a new condensing agent was studied. A model reaction of benzoic acid and aniline with PDCP through a change in their addition order revealed that PDCP reacted with aniline more favorably than it did with the acid, and it could activate about 2 mol of aniline to produce benzanilide in a nearly quantitative yield. A preferential reaction with aniline occurred even in the presence of the acid. The reaction was applied to the polyamidation of dicarboxylic acids and diamines or of p‐aminobenzoic acid (PABA) with 0.6 equiv of PDCP with respect to the amino groups in pyridine/N‐methyl‐2‐pyrrolidone in the presence of LiCl. Polyterephthalamides and polyisophthalamides with moderate inherent viscosity values were produced. The polycondensation of PABA was significantly promoted by the slow addition of PDCP over a period of 20–40 min and the presence of LiCl, producing poly(p‐benzamide) with inherent viscosity values of about 2.4. Unsubstituted PDCP and PDCPs with an electron‐donating methoxy substituent afforded better results. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4126–4131, 2004  相似文献   

5.
Two types of three‐arm and four‐arm, star‐shaped poly(D,L ‐lactic acid‐alt‐glycolic acid)‐b‐poly(L ‐lactic acid) (D,L ‐PLGA50‐b‐PLLA) were successfully synthesized via the sequential ring‐opening polymerization of D,L ‐3‐methylglycolide (MG) and L ‐lactide (L ‐LA) with a multifunctional initiator, such as trimethylolpropane and pentaerythritol, and stannous octoate (SnOct2) as a catalyst. Star‐shaped, hydroxy‐terminated poly(D,L ‐lactic acid‐alt‐glycolic acid) (D,L ‐PLGA50) obtained from the polymerization of MG was used as a macroinitiator to initiate the block polymerization of L ‐LA with the SnOct2 catalyst in bulk at 130 °C. For the polymerization of L ‐LA with the three‐arm, star‐shaped D,L ‐PLGA50 macroinitiator (number‐average molecular weight = 6800) and the SnOct2 catalyst, the molecular weight of the resulting D,L ‐PLGA50‐b‐PLLA polymer linearly increased from 12,600 to 27,400 with the increasing molar ratio (1:1 to 3:1) of L ‐LA to MG, and the molecular weight distribution was rather narrow (weight‐average molecular weight/number‐average molecular weight = 1.09–1.15). The 1H NMR spectrum of the D,L ‐PLGA50‐b‐PLLA block copolymer showed that the molecular weight and unit composition of the block copolymer were controlled by the molar ratio of L ‐LA to the macroinitiator. The 13C NMR spectrum of the block copolymer clearly showed its diblock structures, that is, D,L ‐PLGA50 as the first block and poly(L ‐lactic acid) as the second block. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 409–415, 2002  相似文献   

6.
A novel series of hard‐soft‐hard triblock azo‐copolymers (TBCs) composed of poly(2‐[2‐(4‐cyano‐azobenzene‐4‐oxy)ethylene‐oxy]ethyl methacrylate) (PCEAMA), poly(methyl methacrylate) (PMMA) and poly(p‐dodecylphenyl‐N‐acrylamide) (PDOPAM) were synthesized by employing reversible addition‐fragmentation chain transfer polymerization. Chemical structures and molecular weights were characterized by 1H nuclear magnetic resonance (NMR) and gel permeation chromatography (GPC). Thermal behavior, mesophase, photochemistry and morphology were investigated using differential scanning calorimetry (DSC), optical polarizing microscopy (OPM), ultraviolet–visible spectrophotometry (UV–vis), atomic force microscopy (AFM) and grazing‐incidence small‐angle X‐ray scattering (GISAXS). Kinetic studies confirmed characteristic of controlled/living radical polymerization with low polydispersities (≤1.40). TBCs manifested both endothermic and exothermic transition peaks assigned to smectic to nematic, nematic to smectic, and smectic‐A to smectic‐C phases. TBCs having hight azo fractions of 39 and 34 wt % revealed textures of smectic phase whereas TBC possessing 30 wt % of azo content exhibited poor texture, suggesting nematic phase. Regarding TBC with low azo ratio (25 wt %), neither mesophase texture was found. All TBCs showed photoresponsive behavior under UV–vis irradiation or thermal relaxation. TBC‐1 with PCAEMA (39 wt %), PMMA (40 wt %) and PDOPAM (21 wt %) generated a mixture of cylinder and lamellar nanostructures compared to TBC‐2 and TBC‐3 which formed lamellae. However, TBC‐4 having the highest PDOPAM fraction (50 wt %) produced hexagonal cylindrical nanostructure. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1617–1629  相似文献   

7.
A set of poly[ω‐(4′‐cyano‐4‐biphenyloxy)alkyl‐1‐glycidylether]s were synthesized by the chemical modification of the corresponding poly(ω‐bromoalkyl‐1‐glycidylether)s with the sodium salt of 4‐cyano‐4′‐hydroxybiphenyl. New high‐molecular‐weight side‐chain liquid‐crystalline polymers were obtained with excellent yield and almost quantitative degree of modification. All side‐chain liquid‐crystalline polymers were rubbers soluble in tetrahydrofuran. The characterization by 1H and 13C NMR revealed no changes in the regioregular isotactic microstructure of the starting polymer and the absence of undesirable side reactions such as deshydrobromination. The liquid crystalline behavior was analyzed by DSC and polarized optical microscopy, and mesophase assignments were confirmed by X‐ray diffraction. Polymers that had alkyl spacers with n = 2 and 4 were nematic, those that had spacers with n = 6 and 8 were nematic cybotactic, and those that had longer spacers (n = 10 and 12) were smectic C and showed some crystallization of the side alkyl chains. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3002–3012, 2004  相似文献   

8.
A series of new side‐chain cholesteric elastomers derived from cholesteryl 4‐(10‐undecylen‐1‐yloxy)‐4′‐ethoxybenzoate and phenyl 4,4′‐bis(10‐undecylen‐1‐yloxybenzoyloxy‐p‐ethoxybenzoate) was synthesized. The chemical structures of the monomers were confirmed by elemental analyses, Fourier transform infrared, and 1H NMR and 13C NMR spectra. The mesomorphic properties of elastomers were investigated with differential scanning calorimetry, thermogravimetric analysis, polarizing optical microscopy, and X‐ray diffraction measurements. The influence of the content of the crosslinking unit on the phase behavior of the elastomers was examined. Monomer M1 showed a cholesteric phase, and M2 displayed smectic and nematic phases. The elastomers containing <15 mol % of the crosslinking units revealed reversible mesomorphic phase transition, wide mesophase temperature ranges, and high thermal stability. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3315–3323, 2005  相似文献   

9.
Polyanilines soluble in an aqueous basic medium were synthesised by copolymerization of aniline (ANI) with both 2 and 3‐aminobenzoic acids (ABA). Different composition copolymers were prepared by varying the ANI/ABA feed ratio. Poly(aniline‐co‐2‐aminobenzoic acid) (PANI2ABA) and poly(aniline‐co‐3‐aminobenzoic acid) (PANI3ABA) displayed differences in their properties, such as specific charge and fluorescence behavior because the reactivity of 2‐aminobenzoic (2ABA) and 3‐aminobenzoic (3ABA) acids are very different. The new materials were characterized by X‐ray photoelectron, Fourier transform infrared, and Raman spectroscopies. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5587–5599, 2004  相似文献   

10.
A series of rigid‐rod polyamides and polyimides containing p‐terphenyl or p‐quinquephenyl moieties in backbone as well as naphthyl pendent groups were synthesized from two new aromatic diamines. The polymers were characterized by inherent viscosity, elemental analysis, FT‐IR, 1H‐NMR, 13C‐NMR, X‐ray, differential scanning calorimetry (DSC), thermomechanical analysis (TMA), thermal gravimetric analysis (TGA), isothermal gravimetric analysis, and moisture absorption. All polymers were amorphous and displayed Tg values at 304–337°C. Polyamides dissolved upon heating in polar aprotic solvents containing LiCl as well as CCl3COOH, whereas polyimides were partially soluble in these solvents. No weight loss was observed up to 377–422°C in N2 and 355–397°C in air. The anaerobic char yields were 57–69% at 800°C. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 15–24, 1999  相似文献   

11.
Free‐radical copolymerization of glycidyl methacrylate (GMA) with N‐vinylpyrrolidone (VPD) was carried out at 50 °C using 3.0 mol · L?1 of N,N′‐dimethylformamide solution and 9.0 · 10?3 mol · L?1 of 2,2′‐azobisisobutyronitrile as an initiator. The modification reaction of GMA‐VPD copolymers with a model bioactive carboxylic acid, 6‐methoxy‐α‐methyl‐2‐naphthaleneacetic acid (naproxen), was studied in the homogeneous phase using basic catalysts. The influence of the type of catalyst and the GMA content was evaluated. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1192–1199, 2002  相似文献   

12.
The ring‐opening polymerization of a monomer containing a free carboxylic acid group is reported for the first time. The monomer, 5‐methyl‐5‐carboxyl‐1,3‐dioxan‐2‐one (MCC), was copolymerized with trimethylene carbonate (TMC) in an enzymatic ring‐opening polymerization conducted in bulk at 80 °C. The low‐melting TMC comonomer also solubilized the high‐melting MCC monomer, allowing for solvent‐free polymerizations. Six commercially available lipases were screened, and Candida antarctica lipase‐B (Novozym‐435) and Pseudomonas cepacia lipase were selected to catalyze the copolymerization because of their higher monomer conversions. Higher molecular weight polymers (weight‐average molecular weight = 7800–9200) were prepared when Novozym‐435 was used, with less MCC incorporated into the copolymer than used in the monomer feed. However, Pseudomonas cepacia lipase showed good agreement between the molar feed ratios and the molar composition, but the molecular weights (weight‐average molecular weight = 3600–4800) were lower than those obtained when Novozym‐435 was used. 13C NMR spectral data were used for microstructural analysis, which suggested the formation of random, linear, and pendant carboxylic acid groups containing polycarbonates with hydroxyl groups at both chain ends. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1267–1274, 2002  相似文献   

13.
A series of tetrapolyesters were obtained by polymerizing phloretic acid, hydroquinone, p‐hydroxybenzoic acid, or its derivatives, that is, vanillic acid or syringic acid, and dodecanedioic acid. Each monomer was polymerized in its acetylated form, except for the diacid to undergo polymerization by acidolysis. Initial polymerizations had shown that the use of phloretic acid resulted in better polymer properties than with p‐coumaric acid. The predominantly renewable polymers were obtained by melt polymerization using a two‐stage condensation process whereby antimony(III) oxide was applied as catalyst. Monomer conversions were typically close to 90%. 1H and 13C NMR, DSC, TGA, solution viscometry, and GPC were applied, as well as polarized microscopy to determine polymer microstructure and composition, transition temperatures, decomposition temperatures, intrinsic viscosities, and other molecular weight properties, and when applicable the liquid crystalline behavior of the polymers. All peaks, including end group peaks in the 13C NMR spectra were assigned, the monomer sequence distribution was verified to be random, and a complete dyad analysis involving nine dyads and eight peaks was performed. By using p‐hydroxybenzoic acid and its derivatives without any, one or two methoxy groups and varying the copolymer compositions, melting temperatures could be tuned between 106 and 181 °C. The tetrapolyesters, which included residues of p‐hydroxybenzoic acid, formed nematic liquid crystals. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1498–1507  相似文献   

14.
(±)‐exo,endo‐5,6‐Bis{[[11′‐[2″,5″‐bis[2‐(3′‐fluoro‐4′‐n‐alkoxyphenyl)ethynyl]phenyl]undecyl]oxy]carbonyl}bicyclo[2.2.1]hept‐2‐ene (n = 1–12) monomers were polymerized by ring‐opening metathesis polymerization in tetrahydrofuran at room temperature with Mo(CHCMe2Ph)(N‐2,6‐iPr2Ph)(OtBu)2 as the initiator to produce polymers with number‐average degrees of polymerization of 8–37 and relatively narrow polydispersities (polydispersity index = 1.08–1.31). The thermotropic behavior of these materials was independent of the molecular weight and therefore representative of that of a polymer at approximately 15 repeat units. The polymers exhibited an enantiotropic nematic mesophase when n was 2 or greater. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4076–4087, 2006  相似文献   

15.
New hydrogen‐bonded liquid‐crystalline poly(ester amide)s (PEA)s were obtained from 1,4‐terephthaloyl[bis‐(3‐nitro‐N‐anthranilic acid)] (5) or 1,4‐terephthaloyl[bis‐(N‐anthranilic acid)] (6), with or without nitro groups, respectively, through the separate condensation of each with hydroquinone or dihydroxynaphthalene. The dicarboxylic monomers were synthesized from 2‐aminobenzoic acid. The phase behavior of the monomers and polymers were studied with differential scanning calorimetry, polarized light microscopy, and wide‐angle X‐ray diffraction methods. Monomer 5, containing nitro groups, exhibited a smectic liquid‐crystalline phase, whereas the texture of monomer 6 without nitro groups appeared to be nematic. The PEAs containing nitro groups exhibited polymorphism (smectic and nematic), whereas those without nitro groups exhibited only one phase transition (a nematic threaded texture). The changes occurring in the phase behavior of the polymers were explained by the introduction of nitro groups. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1289–1298, 2004  相似文献   

16.
A new series of thermotropic liquid‐crystalline (LC) polyesters were prepared from a diacyl chloride derivative of 4,4′‐(terephthaloyldioxy)‐di‐4‐phenylpropionic acid (PTP) and glycols with a different number of methylene groups (n) [HO(CH2)n OH, n = 6–10, 12] by high‐temperature solution polycondensation in diphenyl oxide. PTP6/10 and PTP6/hydroquinone (H) LC copolyesters were also prepared according to a similar procedure. The chemical structure, LC, phase‐transition behaviors, thermal stability, and solubility were characterized by elemental analysis, Fourier transform infrared spectroscopy, 1H and 13C NMR spectra, differential scanning calorimetry (DSC), thermogravimetric analysis, and a polarizing light microscope. The melting and isotropization temperatures decreased in a zigzag manner as the number of n increased. All of the polyesters formed a nematic phase with the exception of PTP8. The temperature ranges of the mesophase (ΔT) were much wider for the polyesters with an odd number of n's than those with an even number. ΔT increased markedly for the PTP6/10 and PTP6/H copolyesters. The in vitro degradations of the polymers were ascertained by enzymatic hydrolysis and alkaline hydrolysis. The model compound, PTP dihexylester, was synthesized and found to be degraded into terephthalic acid, 3‐(4‐hydroxyphenyl)propionic acid, and 1‐hexanol by Rhizopus delemar lipase, but PTPn homopolyesters and PTP6/10 and PTP6/H copolyesters were resistant to Rhizopus delemar hydrolysis. They were degradable in a sodium hydroxide buffer solution of pH 12 at 60 °C, depending on the number of n's and the copolymer composition. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3043–3051, 2001  相似文献   

17.
The anionic polymerization of 2‐vinylnaphthalene (2VN) has been studied in tetrahydrofuran (THF) at ?78 °C and in toluene at 40 °C. 2VN polymerization in THF, toluene, or toluene/THF (99:1 v/v) initiated by sec‐butyllithium (sBuLi) indicates living characteristics, affording polymers with predefined molecular weights and narrow molecular weight distributions. Block copolymers of 2VN with methyl methacrylate (MMA) and tert‐butyl acrylate (tBA) have been synthesized successfully by sequential monomer addition in THF at ?78 °C initiated by an adduct of sBuLi–LiCl. The crossover propagation from poly(2‐vinylnaphthyllithium) (P2VN) macroanions to MMA and tBA appears to be living, the molecular weight and composition can be predicted, and the molecular weight distribution of the resulting block copolymer is narrow (weight‐average molecular/number‐average molecular weight < 1.3). Block copolymers with different chain lengths for the P2VN segment can easily be prepared by variations in the monomer ratios. The block copolymerization of 2VN with hexamethylcyclotrisiloxane also results in a block copolymer of P2VN and poly(dimethylsiloxane) (PDMS) contaminated with a significant amount of homo‐PDMS. Poly(2VN‐b‐nBA) (where nBA is n‐butyl acrylate) has also been prepared by the transesterification reaction of the poly(2VN‐b‐tBA) block copolymer. Size exclusion chromatography, Fourier transform infrared, and 1H NMR measurements indicate that the resulting polymers have the required architecture. The corresponding amphiphilic block copolymer of poly(2VN‐b‐AA) (where AA is acrylic acid) has been synthesized by acidic hydrolysis of the ester group of tert‐butyl from the poly(2VN‐b‐tBA) copolymer. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4387–4397, 2002  相似文献   

18.
Pulsed laser polymerization (PLP) experiments were performed on the bulk polymerization of methyl methacrylate (MMA) at ?34 °C. The aim of this study was to investigate the polymer end groups formed during the photoinitiation process of MMA monomer using 2,2‐dimethoxy‐2‐phenylacetophenone (DMPA) and benzoin as initiators via matrix‐assisted laser desorption/ionization time‐of‐flight (MALDI‐TOF) mass spectrometry. Analysis of the MALDI‐TOF spectra indicated that the two radical fragments generated upon pulsed laser irradiation show markedly different reactivity toward MMA: whereas the benzoyl fragment—common to both DMPA and benzoin—clearly participates in the initiation process, the acetal and benzyl alcohol fragments cannot be identified as end groups in the polymer. The complexity of the MALDI‐TOF spectrum strongly increased with increasing laser intensity, this effect being more pronounced in the case of benzoin. This indicates that a cleaner initiation process is at work when DMPA is used as the photoinitiator. In addition, the MALDI‐TOF spectra were analyzed to extract the propagation‐rate coefficient, kp, of MMA at ?34 °C. The obtained value of kp = 43.8 L mol?1 s?1 agrees well with corresponding numbers obtained via size exclusion chromatography (kp = 40.5 L mol?1 s?1). © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 675–681, 2002; DOI 10.1002/pola.10150  相似文献   

19.
Carboxylic acid chloride end‐functionalized all‐aromatic hyperbranched polyesters were prepared from the bulk polycondensation of the AB2 monomer 5‐(trimethylsiloxy)isophthaloyl dichloride. The acid chloride end functionality of the hyperbranched polyester was modified in situ with methanol and yielded methyl ester ends in a one‐pot process. Chain‐end functionalization and esterification were quantitative according to both potentiometric titration and 1H NMR analysis. The signals of 1H and 13C NMR spectra of the esterified hyperbranched polyester were fully assigned from model compounds of the focal, linear, dendritic, and terminal units. The degree of branching and molecular weight averages measured by 1H and 13C NMR spectroscopy and multidetector size exclusion chromatography increased systematically with increasing polymerization temperatures between 80 and 200 °C. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2855–2867, 2002  相似文献   

20.
Chain‐growth condensation polymerization of p‐aminobenzoic acid esters 1 bearing a tri(ethylene glycol) monomethyl ether side chain on the nitrogen atom was investigated by using lithium 1,1,1,3,3,3‐hexamethyldisilazide (LiHMDS) as a base. The methyl ester monomer 1a afforded polymer with low molecular weight and a broad molecular weight distribution, whereas the polymerization of the phenyl ester monomer 1b at ?20 °C yielded polymer with controlled molecular weight (Mn = 2800–13,400) and low polydispersity (Mw/Mn = 1.10–1.15). Block copolymerization of 1b and 4‐(octylamino)benzoic acid methyl ester ( 2 ) was further investigated. We found that block copolymer of poly 1b and poly 2 with defined molecular weight and low polydispersity was obtained when the polymerization of 1b was initiated with equimolar LiHMDS at ?20 °C and continued at ?50 °C, followed by addition of 2 and equimolar LiHMDS at ?10 °C. Spherical aggregates were formed when a solution of poly 1b in THF was dropped on a glass plate and dried at room temperature, although the block copolymer of poly 1b and poly 2 did not afford similar aggregates under the same conditions. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1357–1363, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号