首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using zirconium(IV) acetylacetonate as an initiator of lactide/trimethylene carbonate copolymerization allowed us to obtain high‐molecular‐weight copolymers with high efficiency. The reactivity ratios of the comonomers were 13.0 for lactide and 0.53 for trimethylene carbonate. Despite the large differences between the values of the reactivity ratios, copolymers with randomized chain structures were obtained. This phenomenon occurred as a result of an intensive intermolecular transesterification process proceeding along with the reaction of copolymer chain growth and modifying its final structure. Conducting the copolymerization at the relatively low temperature of about 110 °C, which minimized the influence of intermolecular transesterification, made it possible to obtain semicrystalline copolymers with multiblock structures. Increasing the temperature of copolymerization up to 180 °C was associated with strong intensification of the transesterification reactions. At this temperature, amorphous copolymers were obtained with identical compositions but highly randomized chain structures. An analysis of the chain microstructures of the obtained copolymers, determining the average length of the blocks, the intermolecular transesterification ratio, and the degree of chain randomization, was conducted by means of NMR spectroscopy. For this purpose, very specific signal assignment in the carbonyl and methylene carbon regions of the 13C NMR spectra to appropriate comonomer sequences of polymeric chains was performed. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3184–3201, 2006  相似文献   

2.
Lactide polymerization using zirconium(IV) acetylacetonate [Zr(acac)4] as an initiator was investigated. In the reaction between Zr(acac)4 and the monomer molecule, lactide deprotonation and the release of acetylacetone occurred. The structures of the obtained complexes were analyzed with high‐resolution NMR spectroscopy. A computational method was used to calculate the hypothetical structures. The role of the obtained complexes in the initiation of polymerization and the reaction of chain growth was proposed. The influence of the reaction temperature on the structures of the complexes was investigated. Polylactide chain growth proceeded by an insertion‐coordination mechanism. The polymer chain grew on one ligand, which was formed in advance from a deprotonated lactide. The molecular masses of the obtained polymers were the same as the theoretical masses and were directly proportional to the reaction conversion. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1886–1900, 2004  相似文献   

3.
Zirconium(IV) acetylacetonate [Zr(acac)4] is a very good initiator for the terpolymerization of glycolide with L‐lactide and ?‐caprolactone. The microstructure of the obtained terpolymer was determined by NMR spectroscopy and then compared with terpolymers obtained in the presence of stanous(II) octoate [Sn(oct)2]. Samples obtained with Zr(acac)4 were characterized by a segmental‐chain microstructure. Apart from relatively long lactidyl microblocks, there were also segments made of random copolymer of glycolide with lactide. Such a structure is formed as a result of strong transesterification caused by active caproyl chain endings attacking the glycolidyl groups. Domination of this type of transestrification is shown. The growth of terpolymer chains and the influence of transesterification on gradual changes of the microstructure of the forming terpolymer chain were examined. Significant differences among glycolide, lactide, and the least reactive caprolactone were observed. The results of differential scanning calorimetric examinations of the obtained terpolymers are presented. Differences between the structures of random terpolymers obtained during terpolymerization initiated by Sn(oct)2 and those obtained by Zr(acac)4 influence their thermal properties. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3129–3143, 2002  相似文献   

4.
A series of L‐lactide (LLA), 1,3‐trimethylene carbonate (TMC) and glycolide (GA) terpolymers (LTG) of different monomer molar ratios were synthesized by using ring‐opening copolymerization. An effective and low‐toxic zirconium (IV) acetylacetonate Zr(Acac)4 was used as catalyst. The viscosity‐average molecular weights (Mη) of obtained polymers were all above 2.2×104 g/mol. The chemical structure and viscosity of terpolymers were confirmed by Fourier transform infrared spectroscopy (FTIR), 1H nuclear magnetic resonance (1HNMR), 13C nuclear magnetic resonance (13CNMR) and an Ubbelohde viscometer. The thermal and mechanical properties were investigated by means of differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), X‐ray diffraction (XRD) and stress‐strain measurements. Results suggested that all terpolymers were amorphous and showed good thermal stability. Also it was found that elongation increased with the decreasing of LLA unit. More importantly, terpolymers displayed shape memory property when deformation temperatures were 14‐15 °C above Tg.  相似文献   

5.
The results of the copolymerization of glycolide with cyclic trimethylene carbonate and 2,2‐dimethyltrimethylene carbonate are described. The copolymerization was conducted in the presence of low‐toxicity zirconium(IV) acetylacetonate as an initiator. With this kind of initiator, the composition of the comonomer units in the copolymer chains was assumed to be obtained with high efficiency. Despite significant differences in the comonomer reactivity, in copolymers containing comparable amounts of glycolidyl and carbonate sequences, highly randomized chain structures were observed. This effect resulted from strong intermolecular transesterification that proceeded during the studied copolymerization and caused glycolidyl microblock randomization. The assignment of the spectral NMR lines to appropriate comonomer sequences of polymeric chains was performed in the region of methylene protons of glycolidyl units in 1H NMR spectra of the copolymers and in the carbonyl region of carbon spectra. The equations were formulated for a detailed characterization of the obtained copolymer chains, the average lengths of the blocks, and the transesterification and randomization coefficients. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 98–114, 2006  相似文献   

6.
Ring‐opening copolymerization of L ‐lactide (LLA) and 1,3‐trimethylene carbonate (TMC) blends with LLA/TMC feed ratios from 90/10 to 50/50 was realized at 110 or at 180 °C for various time periods, using low toxic zirconium (IV) acetylacetonate (Zr(Acac)4) as initiator. The resulting copolymers exhibit different chain microstructures. Copolymers obtained at 110 °C exhibit a gradient chain structure with the presence of lactidyl sequences next to very short ones, and are semicrystalline. In contrast, copolymers obtained at 180 °C are amorphous because of a more random chain microstructure with the presence of larger amounts of medium sequences. Degradation of the copolymers was carried out in pH 7.4 phosphate buffer at 37 °C. Analytical techniques such as 1H NMR, DSC, GPC, and XRD were used to monitor the degradation. Initially amorphous copolymers can remain amorphous during degradation because of the highly random unit's distribution, and equivalent LLA and TMC contents. However, initially amorphous copolymers containing larger amounts of lactidyl units are able to crystallize during degradation because of the presence of relatively long LLA blocks. Insofar, as initially semicrystalline copolymers are concerned, degradation occurs preferentially in the amorphous zones. Therefore, various degradation behaviors and degradation rates can be obtained by varying the chemical composition, chain microstructure, and morphology of PLLA‐PTMC copolymers. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3869–3879, 2009  相似文献   

7.
Polystyrene‐b‐poly(1,2‐isoprene‐ran‐3,4‐isoprene) block copolymers with azobenzene side groups were synthesized by the esterification of azobenzene acid chloride with polystyrene‐b‐hydroxylated poly(1,2‐isoprene‐ran‐3,4‐isopenre) block copolymers for creating new photochromic materials. The resulting block copolymers with azobenzene side groups were characterized for structural, thermal, and morphological properties. IR and NMR spectroscopies confirmed that the polymers obtained had the expected structures. Differential scanning calorimetric measurements by heating runs clearly showed the glass transitions of polystyrene and polyisoprene main chains and two distinct first‐order transitions at temperatures of azobenzene side groups around 48 and 83 °C. The microstructure of these block copolymer films was investigated using both transmission electron microscopy (TEM) and near‐field optical microscopy (NOM). TEM images revealed typical microphase‐separated morphologies such as sphere, cylinder, and lamellar structures. The domain spacing of microphase‐separated cylindrical morphology in the NOM image agreed with that of the TEM results. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2406–2414, 2002  相似文献   

8.
The reaction of glycidyl phenyl ether (GPE) with 1‐aminoalkanes‐intercalated α‐zirconium phosphate (α‐ZrP·1‐aminoalkane): 1‐aminoalkanes 1‐aminopropane (α‐ZrP·Pr), 1‐aminobutane (α‐ZrP·Bu), 1‐aminooctane (α‐ZrP·Oct), and 1‐aminohexadecane (α‐ZrP·Hed) was carried out at varying temperatures for 1 h periods. Reaction progress was not observed until the reactants were heated to 80 °C or above. On increasing the temperature, the conversion factors increased such that, at 140 °C, conversions of 62% (α‐ZrP·Pr), 60% (α‐ZrP·Bu), 67% (α‐ZrP·Oct), and 64% (α‐ZrP·Hed) were obtained. The thermal stabilities as latent initiators were tested: GPEs reacted with α‐ZrP·Pr, α‐ZrP·Bu, and α‐ZrP·Oct at 40 °C for 360 h achieved conversions of 83, 55, and 59%, respectively. In contrast, the reaction in the presence of α‐ZrP·Hed did not proceed at 40 °C. The order of the thermal stability of GPE in the presence of α‐ZrP·1‐aminoalkane intercalation compounds was: α‐ZrP·Hed > α‐ZrP·Bu ≈ α‐ZrP·Oct > α‐ZrP·Pr. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1854–1861  相似文献   

9.
Photocurable biodegradable multiblock copolymers were synthesized from poly(ε‐caprolactone) (PCL) diol and poly(L ‐lactide) (PLLA) diol with 4,4′‐(adipoyldioxy)dicinnamic acid (CAC) dichloride as a chain extender derived from adipoyl chloride and 4‐hydroxycinnamic acid, and they were characterized with Fourier transform infrared and 1H NMR spectroscopy, gel permeation chromatography, wide‐angle X‐ray diffraction, differential scanning calorimetry, and tensile tests. The copolymers were irradiated with a 400‐W high‐pressure mercury lamp from 30 min to 3 h to form a network structure in the absence of photoinitiators. The gel concentration increased with time, and a concentration of approximately 90% was obtained in 90–180 min for all the films. The photocuring hardly affected the crystallinity and melting temperature of the PCL segments but reduced the crystallinity of the PLLA segments. The mechanical properties, such as the tensile strength, modulus, and elongation, were significantly affected by the copolymer compositions and gel concentrations. Shape‐memory properties were determined with cyclic thermomechanical experiments. The CAC/PCL and CAC/PCL/PLLA (75/25) films photocured for 30–120 min showed good shape‐memory properties with strain fixity rates and recovery rates of approximately 100%. The formation of the network structure and the crystallization and melting of the PCL segments played very important roles for the typical shape‐memory properties. Finally, the degradation characteristics of these copolymers were investigated in a phosphate buffer solution at 37 °C with proteinase‐k and Pseudomonas cepacia lipase. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2426–2439, 2005  相似文献   

10.
The tertiary chlorine (Clt) content of vinyl chloride/2‐chloropropene copolymers [P(VC‐co‐2CP)] was determined by NMR spectroscopy. Copolymers containing 6.8–47.0 Clt's per P(VC‐co‐2CP) chain were used to initiate the cationic grafting of α‐methylstyrene, norbornadiene, indene, and norbornene with Et2AlCl under various conditions. Grafting was demonstrated by selective solvent extraction, and the effect of the experimental conditions on the grafting efficiency was examined. Select rheological and thermal characteristics of P(VC‐co‐2CP) grafts, including the glass‐transition temperature, heat deflection temperature, and discoloration upon heating, were studied. P(VC‐co‐2CP) carrying 7–11 poly(α‐methylstyrene) or polynorbornadiene branches per chain raised the glass‐transition temperature to, or above, that of a blend control. P(VC‐co‐2CP)s fitted with polyindene or polynorbornene branches were less effective in raising the mechanical properties. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3644–3651, 2002  相似文献   

11.
Polymerization of 2‐(diethylamino)ethyl methacrylate (DEAEMA) via homogeneous atom transfer radical polymerization under various reaction conditions is described. The effects of the initiators and solvents were examined. With 1,1,4,7,10,10‐hexamethyl triethylenetetramine/copper(I) chloride/p‐toluenesulfonyl chloride as the ligand/catalyst/initiator system in methanol, poly(DEAEMA) with a polydispersity index as low as 1.07 was synthesized. Kinetic studies demonstrated the polymerization was very well controlled and exhibited the living characteristic of the process. Well‐defined block copolymers of DEAEMA and tert‐butyl methacrylate (tBMA) were successfully synthesized. The copolymers could be synthesized with equally good results by starting with either p(DEAEMA) or p(tBMA) as the macroinitiators. However, only the macroinitiators terminated with chlorine should be used. The corresponding macroinitiators with bromine as a transferable group did not yield well‐defined copolymers. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2688–2695, 2003  相似文献   

12.
Activated with methylaluminoxane (MAO), phenoxy‐based zirconium complexes bis[(3‐tBu‐C6H3‐2‐O)‐CH?NC6H5]ZrCl2, bis[(3,5‐di‐tBu‐C6H2‐2‐O)‐PhC?NC6H5] ZrCl2, and bis[(3,5‐di‐tBu‐C6H2‐2‐O)‐PhC?N(2‐F‐C6H4)]ZrCl2 for the first time have been used for the copolymerization of ethylene with 10‐undecen‐1‐ol. In comparison with the conventional metallocene, the phenoxy‐based zirconium complexes exhibit much higher catalytic activities [>107 g of polymer (mol of catalyst)?1 h?1]. The incorporation of 10‐undecen‐1‐ol into the copolymers and the properties of the copolymers are strongly affected by the catalyst structure. Among the three catalysts, complex c is the most favorable for preparing higher molecular weight functionalized polyethylene containing a higher content of hydroxyl groups. Studies on the polymerization conditions indicate that the incorporated commoner content in the copolymers mainly depends on the comonomer concentration in the feed. The catalytic activity is slightly affected by the Al(MAO)/Zr molar ratio but decreases greatly with an increase in the polymerization temperature. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5944–5952, 2005  相似文献   

13.
One‐pot regioselective benzylation of pyrroles and indoles using zirconium tetrachloride is discussed. This has been achieved by in‐situ generation of di(1H‐pyrrol‐1‐yl)zirconium(IV) chloride and di(1H‐indol‐1‐yl)zirconium(IV) chloride. It was observed that benzylation reactions of these complexes using n‐BuLi occurred at C‐2 position for pyrrole and C‐3 for indole. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
A study of ethene solution polymerization with the rac‐dimethylsilylbis(indenyl)‐zirconium dichloride/methylaluminoxane catalyst system in a high‐temperature (140 °C), continuously stirred tank reactor system was carried out. 13C NMR, gel permeation chromatography, Fourier transform infrared, and rheological measurements were used for polymer analyses. Polyethylenes with low molecular weights (weight‐average molecular weight ≈ 35–55 kg/mol) and small amounts of methyl, ethyl, and long‐chain branching were produced. 13C NMR measurements showed that the long‐chain and methyl branches increased and that the ethyl branch contents decreased with decreasing monomer concentrations. At high monomer concentrations, the chain transfer to the coordinated monomer was concluded to be the predominant chain termination mechanism, whereas the chain transfer to aluminum was dominant at low monomer concentrations, which was evidenced by the fact that the selectivity of end groups was reduced to about 50%. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3292–3301, 2002  相似文献   

15.
The aim of this research was to study the effect of the initiator on the resulting monomer distribution for the cationic ring‐opening copolymerization of 2‐ethyl‐2‐oxazoline (EtOx) and 2‐phenyl‐2‐oxazoline (PhOx). At first, kinetic studies were performed for the homopolymerizations of both monomers at 160 °C under microwave irradiation using four initiators. These initiators have the same benzyl‐initiating group but different leaving groups, Cl?, Br?, I?, and OTs?. The basicity of the leaving group affects the ratio of covalent and cationic propagating species and, thus, the polymerization rate. The observed differences in polymerization rates could be correlated to the concentration of cationic species in the polymerization mixture as determined by 1H NMR spectroscopy. In a next‐step, polymerization kinetics were determined for the copolymerizations of EtOx and PhOx with these four initiators. The reactivity ratios for these copolymerizations were calculated from the polymerization rates obtained for the copolymerizations. This approach allows more accurate determination of the copolymerization parameters compared to conventional methods using the composition of single polymers. When benzyl chloride (BCl) was used as an initiator, no copolymers could be obtained because its reactivity is too low for the polymerization of PhOx. With decreasing basicity of the used counterions (Br? > I? > OTs?), the reactivity ratios gradually changed from rEtOx = 10.1 and rPhOx = 0.30 to rEtOx = 7.9 and rPhOx = 0.18. However, the large difference in reactivity ratios will lead to the formation of quasi‐diblock copolymers in all cases. In conclusion, the used initiator does influence the monomer distribution in the copolymers, but for the investigated system the differences were so small that no difference in the resulting polymer properties is expected. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4804–4816, 2008  相似文献   

16.
Radical ring‐opening polymerization of 1,1‐dicyano‐2‐vinylcyclopropane 1 was performed in benzonitrile to find the corresponding homopolymer 2 soluble in organic solvents was successfully obtained while that in other solvents gave crosslinked and thus insoluble homopolymer. In addition, 1 underwent radical copolymerization with 1‐cyano‐1‐ester‐2‐vinylcyclopropanes 3 and 4 to afford the corresponding copolymers 7 and 8 . By increasing the content of the 1 ‐derived unit in the resulting copolymers, the solubility of the copolymers in organic solvents became lower and the residual weights at 600 °C and their glass transition temperatures became higher. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1723–1729  相似文献   

17.
D ,L ‐3‐Methylglycolide (MG) was synthesized via two step reactions with a good yield (42%). It was successfully polymerized in bulk with stannous octoate as a catalyst at 110 °C. The effects of the polymerization time and catalyst concentration on the molecular weight and monomer conversion were studied. Poly(D ,L ‐lactic acid‐co‐glycolic acid) (D ,L ‐PLGA50; 50/50 mol/mol) copolymers were successfully synthesized from the homopolymerization of MG with high polymerization rates and high monomer conversions under moderate polymerization conditions. 1H NMR spectroscopy indicated that the bulk ring‐opening polymerization of MG conformed to the coordination–insertion mechanism. 13C NMR spectra of D ,L ‐PLGA50 copolymers obtained under different experimental conditions revealed that the copolymers had alternating structures of lactyl and glycolyl. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4179–4184, 2000  相似文献   

18.
Here we report the incorporation of ketone groups into poly(4‐hydroxystyrene)s main chain by radical copolymerization of O‐protected hydroxystyrenes such as 4‐ethoxyethoxystyrene and 4‐acetoxystyrene with 2,2‐diphenyl‐4‐methylene‐1,3‐dioxorane (DPMD) followed by removal of the protective groups and the photodegradable behavior of obtained copolymers. The copolymerization of O‐protected hydroxystyrenes with DPMD gave the corresponding copolymers bearing DMPD‐derived ketone groups in the main chain, of which content could be controlled by changing monomer feed ratio. The ethoxyethyl and acetyl groups of the obtained copolymers were completely removed under acidic and basic conditions, respectively, to afford poly(4‐hydroxystyrene)s having ketone moieties in the main chain. The molecular weights of these copolymers decreased under photoirradiation due to the Norrish‐type reactions of the ketone groups distributed in the main chain. These results demonstrate that poly(4‐hydroxystyrene)s having ketone groups in the main chain possess good photo‐scissibility. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

19.
Statistical copolymers of 2‐hydroxyethyl methacrylate (HEMA) and 2‐diethylaminoethyl methacrylate (DEA) were synthesized at 50 °C by free‐radical copolymerization in bulk and in a 3 mol L?1 N,N′‐dimethylformamide solution with 2,2′‐azobisisobutyronitrile as an initiator. The solvent effect on the apparent monomer reactivity ratios was attributed to the different aggregation states of HEMA monomer in the different solvents. The copolymers obtained were water‐insoluble at a neutral pH but soluble in an acidic medium when the molar fraction of the DEA content was higher than 0.5. The quaternization of DEA residues increased the hydrophilic character of the copolymers, and they became water‐soluble at a neutral pH when the HEMA content was lower than 0.25. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2427–2434, 2002  相似文献   

20.
This article discusses an effective route to prepare amphiphilic diblock copolymers containing a poly(ethylene oxide) block and a polyolefin block that includes semicrystalline thermoplastics, such as polyethylene and syndiotactic polystyrene (s‐PS), and elastomers, such as poly(ethylene‐co‐1‐octene) and poly(ethylene‐co‐styrene) random copolymers. The broad choice of polyolefin blocks provides the amphiphilic copolymers with a wide range of thermal properties from high melting temperature ~270 °C to low glass‐transition temperature ~?60 °C. The chemistry involves two reaction steps, including the preparation of a borane group‐terminated polyolefin by the combination of a metallocene catalyst and a borane chain‐transfer agent as well as the interconversion of a borane terminal group to an anionic (? O?K+) terminal group for the subsequent ring‐opening polymerization of ethylene oxide. The overall reaction process resembles a transformation from the metallocene polymerization of α‐olefins to the ring‐opening polymerization of ethylene oxide. The well‐defined reaction mechanisms in both steps provide the diblock copolymer with controlled molecular structure in terms of composition, molecular weight, moderate molecular weight distribution (Mw/Mn < 2.5), and absence of homopolymer. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3416–3425, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号