共查询到20条相似文献,搜索用时 15 毫秒
1.
Wang H You W Jiang P Yu L Wang HH 《Chemistry (Weinheim an der Bergstrasse, Germany)》2004,10(4):986-993
This paper describes the synthesis and characterization of a novel series of copolymers with different lengths of oligo(phenylene vinylene) (OPV) as the rod block, and poly(propylene oxide) as the coil block. Detailed characterization by means of transmission electron microscopy (TEM), atomic force microscopy (AFM), and small-angle neutron scattering (SANS) revealed the strong tendency of these copolymers to self-assemble into cylindrical micelles in solution and as-casted films on a nanometer scale. These micelles have a cylindrical OPV core surrounded by a poly(propylene glycol) (PPG) corona and readily align with each other to form parallel packed structures when mica is used as the substrate. A packing model has been proposed for these cylindrical micelles. 相似文献
2.
3.
4.
Eric R. Anderson Vikram K. Daga Samuel P. Gido James J. Watkins 《Journal of polymer science. Part A, Polymer chemistry》2020,58(21):3061-3068
Two chemically dissimilar diblock copolymers, polybutadiene-b-poly(acrylic acid), PBd-b-PAA (Mw = 5.8–4 kg mol−1) and poly(styrene)-b-poly(ethylene oxide), PS-b-PEO (Mw = 9–5 kg mol−1) were blended in an effort to achieve morphologies typical of triblock copolymers. Blend compatibility was achieved by the hydrogen bond driven association of the PAA block of one diblock with the PEO block of the other. Small angle X-ray scattering was used to determine the morphologies of the compositions, which were further investigated using transmission electron microscopy and selective staining techniques. The crystallinity of the PEO block was determined by differential scanning calorimetry. The hydrogen bond interactions between PEO and PAA yielded a complex triblock lamellar morphology of the form PS-b-(PEO/PAA)-b-PBd-b-(PEO/PAA). This morphology was stable when crystallization of PEO was suppressed by sufficient interaction with PAA. 相似文献
5.
Ying Wang Xin Li Chunyan Hong Caiyuan Pan 《Journal of polymer science. Part A, Polymer chemistry》2011,49(15):3280-3290
Thermoresponsive double hydrophilic diblock copolymers poly(2‐(2′‐methoxyethoxy)ethyl methacrylate‐co‐oligo(ethylene glycol) methacrylate)‐b‐poly(6‐O‐methacryloyl‐D ‐galactopyranose) (P(MEO2MA‐co‐OEGMA)‐b‐PMAGP) with various compositions and molecular weights were obtained by deprotection of amphiphilic diblock copolymers P(MEO2MA‐co‐OEGMA)‐b‐poly(6‐O‐methacryloyl‐1,2:3,4‐di‐O‐isopropylidene‐D ‐galactopyranose) (P(MEO2MA‐co‐OEGMA)‐b‐PMAlpGP), which were prepared via reversible addition‐fragmentation chain transfer (RAFT) polymerization using P(MEO2MA‐co‐OEGMA) as macro‐RAFT agent. Dynamic light scattering and UV–vis studies showed that the micelles self‐assembled from P(MEO2MA‐co‐OEGMA)‐b‐PMAlpGP were thermoresponsive. A hydrophobic dye Nile Red could be encapsulated by block copolymers P(MEO2MA‐co‐OEGMA)‐b‐PMAGP upon micellization and released upon dissociation of the formed micelles under different temperatures. The galactose functional groups in the PMAGP block have specific interaction with HepG2 cells, and P(MEO2MA‐co‐OEGMA)‐b‐PMAGP has potential applications in hepatoma‐targeting drug delivery and biodetection. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011 相似文献
6.
Polymeric micelles based on a thermoresponsive linear-dendritic block copolymer were completely disrupted into unimers upon cooling the solution to a temperature below its LCST and reversibly regenerated upon heating again. 相似文献
7.
Jun Zhang 《Journal of Dispersion Science and Technology》2018,39(3):326-332
The directed self-assembly of diblock copolymers in solvents is studied systematically using a simulated annealing method. Effects of the shape, scale, and adsorption capacity of the induced surface on the morphology of the aggregates are examined. A variety of morphologies are predicted. By increasing the scale of induced surface, the micellar shape transforms from cylinder to sheet with a tail and finally to thin sheet without tail. The shape of induced surface determines the sheet’s shape, such as rounded and square. Configurations of hydrophobic blocks and interfacial energies are investigated by calculating the mean square end-to-end distances and the contact numbers between hydrophobic monomer and other species, respectively. 相似文献
8.
A novel interconnected cylindrical micellar network was prepared from a diblock copolymer, poly(maleic anhydride-alt-styrene)-b-polystyrene, in ethanol under a self-assembly directing agent: Zn2+ ions. The solution containing interconnected cylindrical network is bluish and transparent, which is stable for more than 6 months at room conditions without any observable macroscopic phase separation. In aqueous solution, however, hydrolysis of the anhydride yields hydrophilic carboxyl groups, which result in formation of uniform positive spherical micelles from the same diblock polymer. The nanostructures of both the spherical micelles and cylindrical assemblies are characterized with light scattering and transmission electron microscopy (TEM). 相似文献
9.
10.
Rodríguez-Hernández J Lecommandoux S 《Journal of the American Chemical Society》2005,127(7):2026-2027
The synthesis of a new zwitterionic diblock copolymer poly(l-glutamic acid)-b-poly(l-lysine) (PGA-b-PLys) is described, and its self-assembly into schizophrenic vesicles that can reversibly be produced in moderate acidic or basic aqueous solutions is reported. These pH-sensitive nanoparticles are expected to be very promising candidates in macromolecular nanobiotechnologies. 相似文献
11.
Burkhardt M Martinez-Castro N Tea S Drechsler M Babin I Grishagin I Schweins R Pergushov DV Gradzielski M Zezin AB Müller AH 《Langmuir : the ACS journal of surfaces and colloids》2007,23(26):12864-12874
Ionic amphiphilic diblock copolymer polyisobutylene-block-poly(methacrylic acid) (PIBx-b-PMAAy), with various lengths of nonpolar (x=25-75) and polyelectrolyte (y=170-2600) blocks, spontaneously dissolve in aqueous media at pH>4, generating macromolecular assemblies, the aggregation number of which depends on external stimuli (pH and ionic strength). Spherical micellar morphology with a compact core formed by the PIB blocks and a swollen corona built up from the PMAA blocks was deduced by cryogenic transmission electron microscopy. The micelles were further characterized by means of dynamic and static light scattering as well as small-angle neutron scattering. The critical micellization concentration, estimated by means of fluorescence spectroscopy with the use of pyrene as a polarity probe, is decisively determined by the length of the PIB block and is insensitive to changes in the length of the PMAA block. 相似文献
12.
13.
Ge Z Cai Y Yin J Zhu Z Rao J Liu S 《Langmuir : the ACS journal of surfaces and colloids》2007,23(3):1114-1122
Poly(N-isopropylacrylamide) (PNIPAM)-based tetrafunctional atom transfer radical polymerization (ATRP) macroinitiator (1b) was synthesized via addition reaction of mono-amino-terminated PNIPAM (1a) with glycidol, followed by esterification with excess 2-bromoisobutyryl bromide. Well-defined double hydrophilic miktoarm AB4 star copolymer, PNIPAM-b-(PDEA)4, was then synthesized by polymerizing 2-(diethylamino)ethyl methacrylate (DEA) via ATRP in 2-propanol at 45 degrees C using 1b, where PDEA was poly(2-(diethylamino)ethyl methacrylate). For comparison, PNIPAM-b-PDEA linear diblock copolymer with comparable molecular weight and composition to that of PNIPAM-b-(PDEA)4 was prepared via reversible addition-fragmentation chain transfer (RAFT) polymerization. The pH- and thermoresponsive "schizophrenic" micellization behavior of the obtained PNIPAM65-b-(PDEA63)4 miktoarm star and PNIPAM70-b-PDEA260 linear diblock copolymers were investigated by 1H NMR and laser light scattering (LLS). In acidic solution and elevated temperatures, PNIPAM-core micelles were formed; whereas at slightly alkaline conditions and room temperature, structurally inverted PDEA-core micelles were formed. The size of the PDEA-core micelles of PNIPAM65-b-(PDEA63)4 is much smaller than that of PNIPAM70-b-PDEA260. Furthermore, the pH-induced micellization kinetics of the AB4 miktoarm star and AB block copolymers were investigated by the stopped-flow light scattering technique upon a pH jump from 4 to 10. Typical kinetic traces for the micellization of both types of copolymers can be well fitted with double-exponential functions, yielding a fast (tau1) and a slow (tau2) relaxation processes. tau1 for both copolymers decreased with increasing polymer concentration. tau2 was independent of polymer concentration for PNIPAM65-b-(PDEA63)4, whereas it decreased with increasing polymer concentration for PNIPAM70-b-PDEA260. The chain architectural effects on the micellization properties and the underlying mechanisms were discussed in detail. 相似文献
14.
15.
Polyion complex (PIC) micelles were spontaneously formed in aqueous solutions through electrostatic interaction between two oppositely charged block copolymers, poly(N-isopropylacrylamide)-b-poly(L-glutamic acid) and poly(N-isopropylacrylamide)-b-poly(L-lysine). Their controlled synthesis was achieved via the ring opening polymerization of N-carboxyanhydrides (NCA), ε-benzyloxycarbonyl-L-lysine (Lys(Z)-NCA) or γ-benzyl-L-glutamate (BLG-NCA) with amino-terminated poly(N-isopropylacrylamide) macroinitiator and the subsequent deprotection reaction. The formation of PIC micelles was confirmed by dynamic light scattering and transmission electron microscopy. Turbidimetric characterization suggested that the formed PIC micelles had a concentration-dependent thermosensitivity and their phase transition behaviors could be easily adjusted either by the block length of coplymers or the concentration of micelles. 相似文献
16.
Ken‐Ichi Seno Shokyoku Kanaoka Sadahito Aoshima 《Journal of polymer science. Part A, Polymer chemistry》2008,46(6):2212-2221
The synthesis of diblock copolymers with designed molecular weight distributions (MWDs) was successfully demonstrated in a continuous living cationic polymerization system using simple equipment. The control of MWDs was achieved by gradually feeding a polymerization reaction mixture into a terminating agent. As thermosensitive diblock copolymers, poly(vinyl ethers) containing a thermosensitive segment with oxyethylene side chains and a hydrophilic segment were prepared. The polymerization was carried out in a gas‐tight microsyringe, and the polymerization mixture was added continuously into methanol during the second‐stage polymerization. The self‐association behavior of the resulting diblock copolymers was evaluated by dynamic light scattering in water. MWD‐designed polymers with thermosensitive segments that varied continuously in length and hydrophilic segments of nearly uniform lengths formed micelles with a broad size distribution. Conversely, polymers with nearly uniform thermosensitive segments and hydrophilic segments of different lengths formed micelles with a narrow size distribution, as observed with conventional narrow MWD diblock copolymers. Thus, the MWD of the thermosensitive segment proved a decisive factor in achieving fine control of self‐association. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2212–2221, 2008 相似文献
17.
Houga C Le Meins JF Borsali R Taton D Gnanou Y 《Chemical communications (Cambridge, England)》2007,(29):3063-3065
Dextran-b-polystyrene diblock copolymers forming miscellaneous spherical self-assemblies in water were obtained by chemical modification of the anomeric extremity of a commercial dextran followed by atom transfer radical polymerisation of styrene. 相似文献
18.
Van Butsele K Sibret P Fustin CA Gohy JF Passirani C Benoit JP Jérôme R Jérôme C 《Journal of colloid and interface science》2009,329(2):235-243
This work focused on the preparation and the aqueous solution properties of hybrid polymeric micelles consisting of a hydrophobic poly(epsilon-caprolactone) (PCL) core and a mixed shell of hydrophilic poly(ethylene oxide) (PEO) and pH-sensitive poly(2-vinylpyridine) (P2VP). The hybrid micelles were successfully prepared by the rapid addition of acidic water to a binary solution of PCL(34)-b-PEO(114) and PCL(32)-b-P2VP(52) diblock copolymers in N,N-dimethylformamide. These micelles were pH-responsive as result of the pH-dependent ionization of the P2VP block. The impact of pH on the self-assembly of the binary mixture of diblocks-thus on the composition, shape, size and surface properties of the micelles-was studied by a variety of experimental techniques, i.e., dynamic and static light scattering, transmission electron microscopy, Zeta potential, fluorescence spectroscopy and complement hemolytic 50 test. 相似文献
19.
A series of fluoroalkyl end-capped diblock copolymers of poly[2-(N,N-dimethylamino)ethyl methacrylate] (PDMAEMA or PDMA) and poly[2-(N,N-diethylamino)ethyl methacrylate] (PDEAEMA or PDEA) have been synthesized via oxyanion-initiated polymerization, in which a potassium alcoholate of 4,4,5,5,6,6,7,7,7-nonafluoro-1-heptanol (NFHOK) was used as an initiator. The chemical structures of the NFHO-PDMA-b-PDEA and NFHO-PDEA-b-PDMA depended on the addition sequence of the two monomers and the feeding molar ratios of [DMA] to [DEA] during the polymerization process. These copolymers have been characterized by (1)H NMR and (19)F NMR spectroscopy and gel permeation chromatography (GPC). The aggregation behavior of these copolymers in aqueous solutions at different pH media was studied using a combination of surface tension, fluorescence probe, and transmission electron microscopy (TEM). Both diblock copolymers exhibited distinct pH/temperature-responsive properties. The critical aggregation concentrations (cacs) of these copolymers have been investigated, and the results showed that these copolymers possess excellent surface activity. Besides, these fluoroalkyl end-capped diblock copolymers showed pH-induced lower critical solution temperatures (LCSTs) in water. TEM analysis indicated that the NFHO-PDMA(30)-b-PDEA(10) diblock copolymers can self-assemble into the multicompartment micelles in aqueous solutions under basic conditions, in which the pH value is higher than the pKa values of both PDMA and PDEA homopolymers, while the NFHO-PDEA(10)-b-PDMA(30) diblock copolymers can form flowerlike micelles in basic aqueous solution. 相似文献
20.
P Padmanabhan FJ Martinez-Veracoechea JC Araque FA Escobedo 《The Journal of chemical physics》2012,136(23):234905
Pure diblock copolymer melts exhibit a narrow range of conditions at which bicontinuous and cocontinuous phases are stable; such conditions and the morphology of such phases can be tuned by the use of additives. In this work, we have studied a bidisperse system of diblock copolymers using theory and simulation. In particular, we elucidated how a short, lamellar-forming diblock copolymer modifies the phase behavior of a longer, cylinder-forming diblock copolymer. In a narrow range of intermediate compositions, self-consistent field theory predicts the formation of a gyroid phase although particle-based simulations show that three phases compete: the gyroid phase, a disordered cocontinuous phase, and the cylinder phase, all having free energies within error bars of each other. Former experimental studies of a similar system have yielded an unidentified, partially irregular bicontinuous phase, and our simulations suggest that at such conditions the formation of a partially transformed network phase is indeed plausible. Close examination of the spatial distribution of chains reveals that packing frustration (manifested by chain stretching and low density spots) occurs in the majority-block domains of the three competing phases simulated. In all cases, a double interface around the minority-block domains is also detected with the outer one formed by the short chains, and the inner one formed by the longer chains. 相似文献