首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
A versatile and efficient approach for the synthesis of new biphenyl-based arsine ligands, by a Pd-catalyzed arsination to introduce the -AsPh(2) moiety, and then a Suzuki-Miyaura cross-coupling for biaryl construction is reported. By Pd-catalyzed arsination with n-Bu(3)SnAsPh(2) (1), (2-bromophenyl)diphenylarsine (2, 83%) was obtained. The Suzuki-Miyaura reaction between the bromoarsine 2 and aryl boronic acids bearing different substituents provided biarylarsine ligands (80-99%). The efficiency of catalysts derived from the new biarylarsine ligands was evaluated in the Pd-catalyzed arsination with perfluoroalkyl iodides (R(f)I). Outstanding activities of catalysts derived from Pd/methoxybiarylarsine ligands were found in this coupling reaction affording perfluoroalkyl arsines in very good yields (57-100%).  相似文献   

2.
Novel unsymmetrical SCS'-pincer ligands, 1-[PhNHC(S)]-3-[Ph(2)P(S)NH]-C(6)H(4) (3) and 1-[PhNHC(S)]-3-[Ph(2)P(S)O]C(6)H(4) (7), bearing a thiocarbamoyl moiety in combination with thiophosphorylamino- and thiophosphoryloxy-donating groups, respectively, were obtained via thiophosphorylation of 3-amino- and 3-hydroxy-benzoic acid (thio)anilides 1 and 6. Direct cyclometallation of the central benzene ring in the ligands 3 and 7 in reaction with (PhCN)(2)MCl(2) (M = Pd, Pt) as a metal precursor afforded κ(3)-SCS'-hybrid pincer complexes 8, 9 with 5- and 6-membered fused metallacycles in good to high yields (67-95%). The complexes 8 and 9 were characterized by multinuclear NMR ((31)P, (1)H, (13)C) and IR spectroscopy as well as single-crystal X-ray crystallography. Palladium complexes 8a and 9a were shown to be active catalysts for the Suzuki-Miyaura cross-coupling reaction. In the solid state the ligands 3 and 7 as well as their Pt(II) and Pd(II) complexes 8 and 9 are luminescent at 300 K. The emission of the complexes has the different origin depending on the metal nature.  相似文献   

3.
[reaction: see text] A series of N-acylethylenediamine-based ligands were synthesized from Boc-protected amino acids. The ligands were screened for the ability to catalyze the asymmetric addition of vinylzinc reagents to aldehydes. Three sites of diversity on the ligands were optimized for this reaction using a positional scanning approach. The optimized ligand 3d was found to catalyze the formation of 15 different (E)-allylic alcohols with enantioselectivities that ranged from 52 to 91% ee and yields that ranged from 40 to 90%. This ligand was especially effective for the reaction of aromatic aldehydes with vinylzinc reagents derived from bulky terminal alkynes. Ligand 3d catalyzed the addition of (E)-(3,3-dimethylbut-1-enyl)(ethyl)zinc to 2-naphthaldehyde to give (R,E)-4,4-dimethyl-1-(naphthalene-1-yl)pent-2-en-1-ol in 89% ee. The ee of this product could be increased to 97% through a single recrystallization.  相似文献   

4.
The optimization of asymmetric catalysts for enantioselective synthesis has conventionally revolved around the synthesis and screening of enantiopure ligands. In contrast, we have optimized an asymmetric reaction by modification of a series of achiral ligands. Thus, employing (S)-3,3'-diphenyl BINOL [(S)-Ph(2)-BINOL] and a series of achiral diimine and diamine activators in the asymmetric addition of alkyl groups to benzaldehyde, we have observed enantiomeric excesses between 96% (R) and 75% (S) of 1-phenyl-1-propanol. Some of the ligands examined have low-energy chiral conformations that can contribute to the chiral environment of the catalyst. These include achiral diimine ligands with meso backbones that adopt chiral conformations, achiral diimine ligands with backbones that become axially chiral on coordination to metal centers, achiral diamine ligands that form stereocenters on coordination to metal centers, and achiral diamine ligands with pendant groups that have axially chiral conformations. Additionally, we have structurally characterized (Ph(2)-BINOLate)Zn(diimine) and (Ph(2)-BINOLate)Zn(diamine) complexes and studied their solution behavior.  相似文献   

5.
Fang T  Du DM  Lu SF  Xu J 《Organic letters》2005,7(11):2081-2084
[reaction: see text]. A series of new chiral C3-symmetric tris(beta-hydroxy amide) ligands have been synthesized via the reaction of 1,3,5-benzenetricarboxylic chloride and optically pure amino alcohols (up to 96% yield). The asymmetric catalytic alkynylation of aldehydes with these new C3-symmetric chiral tris(beta-hydroxy amide) ligands and Ti (O(i)'Pr)4 was investigated. Ligand 4c synthesized from (1R,2S)-(-)-2-amino-1,2-diphenylethanol is effective for the enantioselective alkynylation of various aldehydes, and high enantioselectivity was obtained with aromatic aldehydes and alpha,beta-unsaturated aldehyde (up to 92% ee).  相似文献   

6.
《Tetrahedron: Asymmetry》1998,9(17):3135-3142
Several chiral diphosphite ligands containing six stereogenic centres were synthesised and tested in order to study chiral cooperativity in the Rh- and Pt-catalysed asymmetric hydroformylation of styrene. The ligands were prepared either by the reaction of 2,4-pentanediol enantiomers with (4R,6R)-4,6-dimethyl-2-chloro-1,3,2-dioxaphosphorinane or that of (1S,3S)-1,3-diphenyl-1,3-propanediol with 4,6-dimethyl-2-chloro-1,3,2-dioxaphosphorinane enantiomers. Thus the chirality was varied both in the chelate backbone and in the terminal groups of the ligands. In case of Pt-catalysed hydroformylation, the stereogenic elements in the bridge have been found to be determinate for the product configuration with a cooperative effect from the terminal groups when the constellations are matched with 40% e.e. maximum enantioselectivity. Some coordination chemistry and the crystal structure determination of these ligands are also reported.  相似文献   

7.
The binding of Eu3+-doped LaF3 nanoparticles with biotin moieties at the surface of the stabilizing ligand layer to avidin, immobilized on cross-linked aragose beads, is described. The biotin moieties were attached to the nanoparticles by reaction of an activated ester with the amino groups on the surface of the nanoparticles resulting from the 2-aminoethyl phosphate ligands that were coordinated to the surface through the phosphate end. This strategy of employing the reactions of amines with activated esters provides a general platform to modify the surface of the 2-aminophosphate stabilized Ln3+-doped LaF3 nanoparticles with biologically relevant groups. Significant suppression of nonspecific binding to the avidin modified aragose beads has been realized by the incorporation of poly(ethylene glycol) units via the same reaction of a primary amine with an activated ester. The particle size distribution of the functionalized nanoparticles was within 10-50 nm, with a quantum yield of 19% in H2O for the LaF3 nanoparticles codoped with Ce3+ and Tb3+. A discreet, 4 unit poly(ethylene glycol) spaced heterobifunctional cross-linker, functionalized with biotin and N-hydroxysuccinimide at opposite termini, was covalently linked to the 2-aminoethyl phosphate ligand via the N-hydroxysuccinimide activated ester, making an amide bond, imparting biological activity to the particle. Modification of the remaining unreacted amino groups of the stabilizing ligands was done with Me(OCH2CH2)3CH2CH2(C=O)-NHS (NHS = N-hydroxysuccinimide).  相似文献   

8.
A general and efficient copper catalyst for the amidation of aryl halides   总被引:1,自引:0,他引:1  
An experimentally simple and inexpensive catalyst system was developed for the amidation of aryl halides by using 0.2-10 mol % of CuI, 5-20 mol % of a 1,2-diamine ligand, and K(3)PO(4), K(2)CO(3), or Cs(2)CO(3) as base. Catalyst systems based on N,N'-dimethylethylenediamine or trans-N,N'-dimethyl-1,2-cyclohexanediamine were found to be the most active even though several other 1,2-diamine ligands could be used in the easiest cases. Aryl iodides, bromides, and in some cases even aryl chlorides can be efficiently amidated. A variety of functional groups are tolerated in the reaction, including many that are not compatible with Pd-catalyzed amidation or amination methodology.  相似文献   

9.
Although salen and its analogues are versatile chelate ligands in inorganic and organometallic chemistry, synthesis of unsymmetrical salen derivatives consisting of two different salicylideneimine moieties is difficult because of the C=N bond recombination. To develop stable analogues of salen-type ligands, we synthesized a series of new ligands salamo (=1,2-bis(salicylideneaminooxy)ethane) on the basis of O-alkyl oxime instead of the imine moiety. Eight salamo ligands 1a-h were prepared in 64-88% yields as colorless crystals from the corresponding salicylaldehydes 2a-h. The crystal structure of 1a-c suggests that the oxime-OH form is more predominant than the keto-NH form. The reaction of 2a-e with excess 1,2-bis(aminooxy)ethane gave monooximes 3a-e in 59-86%, which further reacted with a different salicylaldehyde to afford unsymmetrical salamo ligands 4-8 as stable crystals in 51-70%. No reaction took place when a mixture of salamo derivatives 1a and 1b was treated at 40 degrees C in H2O/MeCN (5:95). However, the metathesis reaction of salen derivatives 9a and 9b completed in 2 h to give a statistical mixture. Monooxime 3b was much more stable than monoimine 11 which is difficult to be isolated. These results indicate the extremely high stability of the salamo derivatives 1 and precursors 3.  相似文献   

10.
The kinetics of exchange ofphenylethanethiolate ligands (PhC2S) of monolayer-protected clusters (MPCs, average formula Au140(PhC2S)53) by para-substituted arylthiols (p-X-ArSH) are described. 1H NMR measurements of thiol concentrations show that the exchange reaction is initially rapid and gradually slows almost to a standstill. The most labile ligands, exchanging at the shortest reaction times, are thought to be those at defect sites (edges, vertexes) on the nanoparticle core surface. The pseudo-first-order rate constants derived from the first 10% of the exchange reaction profile vary linearly with in-coming arylthiol concentration, meaning that the labile ligands exchange in a second-order process, which is consistent with ligand exchange being an associative process. A linear Hammett relationship with slope p = 0.44 demonstrates a substituent effect in the ligand place exchange reaction, in which the bimolecular rate constants increase for ligands with electron-withdrawing substituents (1.4 x 10-2 and 3.8 x 10(-3) M(-1) s(-1) for X = NO2 and 4-OH, respectively). This is interpreted as the more polar Au-S bonds at the defect sites favoring bonding with more electron deficient sulfur moieties. At longer reaction times, where ligands exchange on nondefect (terrace) as well as defect sites, the extent of ligand exchange is higher for thiols with more electron-donating substituents. The difference between short-time kinetics and longer-time pseudoequilibria is rationalized based on differences in Au-S bonding at defect vs nondefect MPC core sites. The study adds substance to the mechanisms of exchange of protecting ligands on nanoparticles. The scope and limitations of 1H NMR spectroscopy for determining rate data are also discussed.  相似文献   

11.
The chiral bidentate-N,N ligands, (S(a))-1, (S(a))-2, (S,S)-3 and (S,S)-4, were synthesized. They were shown to contain rigid 2-pyridinyl or 8-quinolinyl building blocks and the C(2)-symmetric chiral frameworks trans-2,5-dimethylpyrrolidinyl or (S)-(+)-2,2'-(2-azapropane-1,3-diyl)-1,1'-binaphthalene. In the (S(a))-2, and (S,S)-4 ligands pair, the 8-quinolinyl skeleton is directly bonded to the C(2)-symmetric chiral frameworks (S)-(+)-2,2'-(2-azapropane-1,3-diyl)-1,1'-binaphthalene or trans-2,5-dimethylpyrrolidinyl. This feature induces rigidity in this pair of ligands upon the N,N-framework. However, this does not occur for the (S(a))-1 and (S,S)-3 ligands, in which the presence of the -CH(2)- spacer between the frameworks bearing the nitrogen atom donors gives greater flexibility to the ligand. A further difference between the pairs of ligands is significant from the electronic properties of the chiral framework N-donor atom. The coordinating properties and the specific steric structural features of the (S(a))-1, (S(a))-2, (S,S)-3, and (S,S)-4 ligands are explained by their reactions with the [Pd(PhCN)(2)Cl(2)] and [Pd(eta(3)-PhCHCHCHPh)(mu-Cl)](2) substrates, in which the reported ligands form chelate complexes, with the exception of (S(a))-2, which failed to react with [Pd(eta(3)-PhCHCHCHPh)(mu-Cl)](2). The ligands were used in the palladium-allyl catalyzed substitution reaction of 1,3-diphenylallyl acetate with dimethylmalonate, with the best result being obtained using the (S(a))-1 ligand, giving the substitution product 2-(1,3-diphenylallyl)dimethylmalonate with an enantiomeric excess of 82% in the S form and a yield of 96%. The work demonstrates that in the presence of a steric ligand control, the electronic properties of the ligand donor atoms play a role though not significant in determining the enantioselectivity of palladium(II) catalyzed allylic substitution reactions. The results of the catalytic reaction do not provide a convincing explanation considering the coordinated chiral ligand features, as rigidity or flexibility and electronic properties of the N-donor atoms. A rationalization of the results is proposed on the basis of NMR studies and DFT calculation on the cationic complexes [Pd(eta(3)-PhCHCHCHPh)(N-N*)]CF(3)SO(3), (N-N* = (S(a))-1, 9; (S,S)-3, 10; (S,S)-4, 11).  相似文献   

12.
通过固相合成方法将聚酰胺-胺树状分子担载于氯球上,对其外围分别用2,4-二羟基苯甲醛和邻羟基苯甲醛进行修饰,再与SnCl2.2H2O反应,形成配体不同的两类树状高分子锡配合物.将此类配合物用作30%的双氧水氧化酮的Baeyer-Villiger反应的非均相催化剂,具有较好的催化活性.2-金刚烷酮、环己酮、3-甲基-2-戊酮等都转化为相应的酯和内酯,底物的转化率和产物选择性均较高.对2-羟基苯甲醛、2,4-二羟基苯甲醛和邻羟基苯甲醛修饰的不同类型催化剂催化下的反应进行比较,发现配体对锡的担载量和催化活性均有不同程度的影响.其中邻羟基苯甲醛修饰的配合物因具有较高的锡担载量而具有了最佳的催化活性.此催化体系使用环境友好的低浓度双氧水为氧化剂,催化剂制备方法简单、催化反应完成时间短、催化剂在多次重复利用后活性没有明显降低,可回收和重复利用.  相似文献   

13.
The reaction of potassium molybdate(VI) with biologically relevant ligands, citric and malic acids, in the presence of H2O2 was investigated for the effect of pH variations on the product pattern. That with citric acid led to the formation of the monomeric complex K4[MoO(O2)2(cit)].4H2O (1) in the pH range 7-9, and dimer K5[MoO(O2)(2-)(Hcit)H(Hcit)(O2)2OMo].6H2O (2) (H4cit = citric acid) at pH 3-6 through carboxylate-carboxylic acid hydrogen bonding. The relation with the previously identified K4[MoO3(cit)].2H2O (4) and K4[Mo2O5(Hcit)2].4H2O (5) were shown. These and other intermediates were shown to react in the pH range 3-6 to give a more stable species 2; the reaction sequence was demonstrated either by the protonation from 1 or the deprotonation of [MoO(O2)2(H2cit)](2-) (8). Evidence that 2 exists as a dimer in solution is presented. The reaction with (S)-malic acid afforded Delta-K(2n)[MoO(O2)2((S)-Hmal)]n.nH2O (3) (H3mal = malic acid) that was oxidized further to oxalato molybdate (11) by H2O2. The three complexes 1-3 were characterized by elemental analysis, UV, IR and NMR spectroscopies, in addition to the X-ray structural studies that show citrate and malate being coordinated as bidentate ligands via alpha-alkoxyl and alpha-carboxylate groups. The formation of these complexes is dictated by pH and their thermal stabilities varied with the coordinated hydroxycarboxylate ligands.  相似文献   

14.
A series of Pd(II) and Pt(II) complexes with two N(∩)S donor ligands, 5-chloro-3-(indolin-2-one)benzothiazoline and 6-nitro-3-(indolin-2-one)benzothiazoline, have been synthesized by the reaction of metal chlorides (PdCl2 and PtCl2) with ligands in 1:2 molar ratios. All the synthesized compounds were characterized by elemental analyses, melting point determinations and a combination of electronic, IR, 1H NMR and 13C NMR spectroscopic techniques for structure elucidation. In order to evaluate the effect of metal ions upon chelation, both the ligands and their complexes have been screened for their antimicrobial activity against the various pathogenic bacterial and fungal strains. The metal complexes have shown to be more antimicrobial against the microbial species as compared to free ligands. One of the ligands, 5-chloro-3-(indolin-2-one)benzothiazoline and its corresponding palladium and platinum complexes have been tested for their antifertility activity in male albino rats. The marked reduction in sperm motility and density resulted in infertility by 62-90%. Significant alterations were found in biochemical parameters of reproductive organs in treated animals as compared to control group. It is concluded that all these effects may finally impair the fertility of male rats.  相似文献   

15.
A combinatorial library of 125 chiral Schiff base ligands 5 was synthesized with the use of solution-phase parallel synthesis and solid-phase extraction (SPE) techniques to scavenge excess reagents and reaction by-products and avoid chromatography. The synthetic methodology coupled five N-Boc-protected beta-amino sulfonyl chlorides 1a-e with five different amines 2f-j to give 25 N-Boc sulfonamides 3, which were in turn deprotected and coupled with five salicylaldehydes 4p-t to give 125 ligands 5 in good yields and of sufficient purity to be used in ligand-catalyzed reactions. These ligands were tested in the copper-catalyzed conjugate addition of dialkyl zinc to cyclic and acyclic enones. A multisubstrate high-throughput screening of the library was performed with an equimolar mixture of 2-cyclohexenone and 2-cycloheptenone (9 and 10, respectively, 0.2 mmol total), with 5.5 mol% ligand 5 (0.011 mmol) and 5 mol% Cu(OTf)2 (OTf= OSO2CF3) (0.010 mmol) in 1:1 toluene/ hexane at - 20 degrees C. From the screening of the library, 5bhr was identified as the best ligand, which yielded 3-ethylcyclohexanone (12) and 3-ethylcycloheptanone (13) in 82% and 81% ee, respectively, and complete conversions. Under optimized conditions (2.75 mol% 5bhr, 2.5 mol% copper(i) triflate, toluene as reaction solvent), improved results were obtained for 12 (90% ee, 93% yield) and for 13 (91% ee, 95% yield). Selected ligands 5 were also tested in the addition of Me2Zn to 2-cyclohexenone (9, ee up to 79%), of Et2Zn to 2-cyclopentenone (11, ee up to 80%) and to acyclic enones 16 and 17 (ee up to 50%).  相似文献   

16.
Miao M  Willer MW  Holm RH 《Inorganic chemistry》2000,39(13):2843-2849
Synthetic models leading to oxosulfidotungsten(VI) groups and dithiolene chelate rings have been investigated. The heterogeneous reaction systems [WO4-nSn]2-/2Ph3SiCl/Me4phen (n = 0-2) in acetonitrile afford the complexes [WQ2(OSiPh3)2(Me4phen)] (1-3) in the indicated yields containing the groups W(VI)O2 (1; 86%), W(VI)O2 (2; 45%), and W(VI)S2 (3; 83%). In the crystalline state these complexes have imposed C2 symmetry, with cis-oxo/sulfido and trans-silyloxide ligands. 1H NMR spectra indicate that this stereochemistry is retained in solution. The colors of 2 (yellow, 367 nm) and 3 (orange, 451 nm) arise from LMCT absorptions at the indicated wavelengths. These results demonstrate that the silylation procedure previously introduced for the preparation of molecules with the Mo(VI)OS group (Thapper, et al. Inorg. Chem. 1999, 38, 4104) extends to tungsten. Methods for the formation of dithiolene chelate rings MS2C2R2 in reactions with sulfide-bound M = Mo or W precursors are summarized. In a known reaction type, 3 and activated acetylenes rapidly form [W(IV)(OSiPh3)2(Me4phen)(S2C2R2)] (R = CO2Me, 4, 83%, and Ph, 5, 98%). In a new reaction type not requiring the isolation of an intermediate, the systems [MO2S2]2-/2Ph3SiCl/Me4phen/PhC=CPh in acetonitrile afford 5 (68%) and [Mo(IV)(OSiPh3)2(Me4phen)(S2C2Ph2)] (6; 61%). Complexes 5 and 6 are isostructural, maintain the trans-silyloxide stereochemistry, and exhibit chelate ring dimensions indicative of ene- 1,2-dithiolate coordination. Reductions in the -1.4 to -1.7 V range are described as metal-centered. It remains to be seen whether the oxo/sulfidotungsten(VI) groups in 1-3 eventuate in the active sites of tungstoenzymes. (Me4phen = 3,4,7,8-tetramethyl-1,10-phenanthroline.)  相似文献   

17.
Abstract

The synthesis and the complex formation of chiral heterotopic ligands with two different binding sites each capable of bonding a different type of metal are described. The action of bis(dimethylamino) aryl phosphine on (S)-(+)-prolinol gives rise to the kinetic stereoisomer (2S,4S)-2-phenyl-1,3,2-oxazaphospholidine 1 and the thermodynamic stereoisomer (2R,4S)-2-phenyl-1,3,2-oxazaphospholidine 2. 1 is then totally converted into 2 at the end of the reaction. The Michaelis Arbuzov reaction of 2 with benzylbromide affords (Rp)-benzylaryl-(2-(S)-bromomethyl pyrrolidine-1-yl) phosphine oxide 3 in 80% yield. Compound 3 is an ideal chiral precursor for the synthesis of chiral hybrid phosphine-phosphine oxide ligands. The bromide atom is smoothly displaced by lithium diphenylphosphide to afford in 80% yield (Rp)-benzylaryl-(2-(S)-diphenylphosphinomethylpyrrolidine-1-yl) phosphine oxide 5. These reaction are proved to be totally stereoselective : the Michaelis Arbuzov reaction does not change the configuration at C2 in the proline ring. The relative configuration (Rp) of 5 (aryl = phenyl) was determinated by X-ray diffraction, from the known configuration of (S)-(+)-prolinol.  相似文献   

18.
The bidentate N-donor ligands 2-aminopyridine (2-ampy), 7-azaindolate (aza) and 1,8-naphthyridine (napy) have been used to study the steric effect of pentafluorophenyl groups in the synthesis of binuclear platinum(II) complexes. The 2-ampy and aza ligands bridge two "Pt(C 6F 5) 2" fragments with Pt...Pt distances of 4.1 and 3.4 A, respectively (complexes 1 and 3). Under the same reaction conditions the napy ligand shows chelating behavior and makes the mononuclear complex ( A) highly reactive because of its strained coordination. One of the Pt-N bonds of the chelating complex is broken on reaction with HX {X = Cl ( 4), Br ( 5)} because of protonation while the anion X (-) occupies a created vacant site. The resulting mononuclear complex eliminates C 6F 5H when refluxed, and a binuclear complex ( 6) with two napy ligands bridging two "Pt(C 6F 5)Cl" fragments is obtained. The reaction of A with HPPh 2 affords a mononuclear complex ( 7) analogous to complexes 5 and 6, but reflux gives a binuclear complex ( 8) with the two napy ligands terminally bound and the PPh 2 groups bridging the "Pt(C 6F 5)napy" moieties. The reaction of A with HCCPh gives a binuclear complex; moreover, the final product does not depend on the ratio of complex A to HCCPh. Complexes 1, 4, 6, 9 have been structurally characterized by X-ray diffraction.  相似文献   

19.
Thiolated amino-alcohols have been synthesized and evaluated as a potential new class of chiral ligands for copper-catalyzed nitro-aldol reactions. The model nitro-aldol reaction took place smoothly at ambient temperature in the presence of catalytic amounts (5-15 mol %) of the ligands and copper(II) acetate to afford the nitro-aldol product in good to excellent yield without accompanying dehydration. Amino-alcohol ligands bearing N-(2-alkylthio)benzyl substituents provided only modest enantioselectivities (22-46% ee) while those carrying N-2-thienylmethyl substituents provided better enantioselectivities (up to 75% ee). A range of aromatic aldehydes were acceptable for the nitro-aldol reaction with nitromethane, giving moderate to good enantioselectivities (69-88% ee).  相似文献   

20.
A small family of new chiral hybrid, diphosphorus ligands, consisting of phosphine-phosphoramidites L1 and L2 and phosphine-phosphonites L3a-c, was synthesized for the application in Rh-catalyzed asymmetric hydroformylation of heterocyclic olefins. High-pressure (HP)-NMR and HP-IR spectroscopy under 5-10 bar of syngas has been employed to characterize the corresponding catalyst resting state with each ligand. Indole-based ligands L1 and L2 led to selective ea coordination, while the xanthene derived system L3c gave predominant ee coordination. Application of the small bite-angle ligands L1 and L2 in the highly selective asymmetric hydroformylation (AHF) of the challenging substrate 2,3-dihydrofuran (1) yielded the 2-carbaldehyde (3) as the major regioisomer in up to 68% yield (with ligand L2) along with good ee's of up to 62%. This is the first example in which the asymmetric hydroformylation of 1 is both regio- and enantioselective for isomer 3. Interestingly, use of ligand L3c in the same reaction completely changed the regioselectivity to 3-carbaldehyde (4) with a remarkably high enantioselectivity of 91%. Ligand L3c also performs very well in the Rh-catalyzed asymmetric hydroformylation of other heterocyclic olefins. Highly enantioselective conversion of the notoriously difficult substrate 2,5-dihydrofuran (2) is achieved using the same catalyst, with up to 91% ee, concomitant with complete regioselectivity to the 3-carbaldehyde product (4) under mild reaction conditions. Interestingly, the Rh-catalyst derived from L3c is thus able to produce both enantiomers of 3-carbaldehyde 4, simply by changing the substrate from 1 to 2. Furthermore, 85% ee was obtained in the hydroformylation of N-acetyl-3-pyrroline (5) with exceptionally high regioselectivities for 3-carbaldehyde 8Ac (>99%). Similarly, an ee of 86% for derivative 8Boc was accomplished using the same catalyst system in the AHF of N-(tert-butoxycarbonyl)-3-pyrroline (6). These results represent the highest ee's reported to date in the AHF of dihydrofurans (1, 2) and 3-pyrrolines (5, 6).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号