首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The presence of high strength fats and oils in dairy industry wastewaters poses serious challenges for biological treatment systems, and, therefore, its pretreatment is necessary in order to remove them. In the present study, synthetic dairy wastewater prepared in the laboratory was pretreated using the sophorolipid-producing yeast Candida bombicola in a laboratory-scale bioreactor under batch, fed-batch, and continuous modes of operation. To support the yeast growth, the wastewater was supplemented with sugarcane molasses (1% w/v) and yeast extract (0.1% w/v). Results from the batch operated fermentor revealed complete utilization of fats present in the wastewater within 96 h with more than 93% COD removal efficiency. The yeast was, however, able to pretreat the wastewater more quickly and efficiently under fed-batch mode of operation than under batch operated condition in the same fermentor. Continuous experiments were carried out with a wastewater retention time of 28 h in the reactor; results showed very good performance of the system in complete utilization of fats and COD removal efficiency of more than 90%. The study proved the excellent potential of the biosurfactant-producing yeast in pretreating high-fat- and oil-containing dairy industry wastewater.  相似文献   

2.
Cow raw milk from dairy cooperatives was examined for its microbial composition. Among the isolates identified, 17.6% were yeasts. The most frequent genus was Candida, although members belonging to the genera Brettanomyces, Dekkera, and Geotricum were also identified. Although qualitative and quantitative tests for extracellular proteolytic activity were positive for all the species isolated, Candida buinensis showed the highest response (23.5 U/mg); therefore, it was selected for subsequent investigation. The results of fermentations carried out at variable temperature, pH, and soybean flour concentration, according to a 23 full factorial design, demonstrated that this yeast ensured the highest production of extracellular proteases (573 U/mL) when cultivated at 35 °C, pH 6.5, and using soybean flour concentrations in the range 0.1–0.5% (w/v). The cell-free supernatants showed the highest activity at 25 °C and pH 7.0, and satisfactory stability in the ranges 25–30 °C and pH 7–9. The first-order rate constants of protease inactivation in the cell-free supernatants were calculated at different temperatures from semi-log plots of the residual activity versus time and then used in Arrhenius and Eyring plots to estimate the main thermodynamic parameters of thermoinactivation (E* = 40.0 kJ/mol; ΔH* = 37.3 kJ/mol; ΔS* = −197.5 J/mol K; ΔG* = 101 kJ/mol).  相似文献   

3.
N-Chloroacetylcytisine was synthesized by acylation of (–)-cytisine. Stable Z- and E-conformers with respect to rotational isomerism around the N-12–CO bond were found in PMR spectra at room temperature. The point at which PMR resonances of the Z- and E-conformers coalesced upon heating was measured. The transition barrier between the conformers was estimated.  相似文献   

4.
l-Asparaginase (ASNase) has proved its use in medical and food industries. Sequence-based screening showed the thermophilic Streptomyces strain Streptomyces thermoluteus subsp. fuscus NBRC 14270 (14270 ASNase) to positive against predicted ASNase primary sequences. The 14270 ASNase gene and four l-asparaginase genes from Streptomyces coelicolor, Streptomyces avermitilis, and Streptomyces griseus (SGR ASNase) were expressed in Streptomyces lividans using a hyperexpression vector: pTONA5a. Among those genes, only 14270 ASNase and SGR ASNase were successful for overexpression and detected in culture supernatants without an artificial signal peptide. Comparison of the two Streptomyces enzymes described above demonstrated that 14270 ASNase was superior to SGR ASNase in terms of optimum temperature, thermal stability, and pH stability.  相似文献   

5.
Due to great interest on producing bioactive compounds for functional foods and biopharmaceuticals, it is important to explore the microbial degradation of potential sources of target biomolecules. Gallotannins are polyphenols present in nature, an example of them is tannic acid which is susceptible to enzymatic hydrolysis. This hydrolysis is performed by tannase or tannin acyl hydrolase, releasing in this way, biomolecules with high-added value. In the present study, chemical profiles obtained after fungal degradation of tannic acid under two bioprocesses (submerged fermentation (SmF) and solid state fermentation (SSF)) were determined. In both fermentation systems (SmF and SSF), Aspergillus niger GH1 strain and tannic acid as a sole carbon source and inducer were used (the presence of tannic acid promotes production of enzyme tannase). In case of SSF, polyurethane foam (PUF) was used like as support of fermentation; culture medium only was used in case of submerged fermentation. Fermentation processes were monitored during 72 h; samples were taken kinetically every 8 h; and all extracts obtained were partially purified to obtain polyphenolic fraction and then were analyzed by liquid chromatography-mass spectrometry (LC-MS). Molecules like gallic acid and n-galloyl glucose were identified as intermediates in degradation of tannic acid; during SSF was identified ellagic acid production. The results obtained in this study will contribute to biotechnological production of ellagic acid.  相似文献   

6.
l-ascorbyl palmitate (ASP) is an oil-soluble derivative of ascorbic acid which is used extensively in food, cosmetics industry, and medical hygiene. Enzymatic synthesis of ascorbyl palmitate in tert-butyl alcohol was carried out using indigenously immobilized lipase preparation PyCal with ascorbic acid and palmitic acid as starting material. The developed batch process under optimized reaction conditions resulted in conversion of 90% with relatively shorter reaction time of 6 h. Continuous process in packed bed reactor gave conversion of 50% with space time yield of 15.46 g/L/h which was found to be higher than the reported literature on enzymatic synthesis of ascorbyl palmitate. The immobilized lipase used in the present work showed good reusability. Characterization of formed ascorbyl palmitate was carried out by FTIR, MS/MS, H1-NMR, and C13-NMR. The enzymatic process resulted in selective synthesis of 6-O-l-ascorbyl palmitate with purity of 98.6% and no side product formation. The use of underivatized starting materials, high space time yield of 15.46 g L?1 h?1, high recyclability of catalyst, and no by-product formation make the overall process highly efficient and clean in terms of energy consumption and waste generation, respectively. The optimized reaction parameters for ascorbyl palmitate synthesis in the present study can be used as a useful reference for industrial synthesis of fatty acid esters of ascorbic acid by enzymatic route.  相似文献   

7.
The hydrodynamic and conformational properties of molecules of poly(N,N-diallyl-N,N-dimethylammonium chloride) and N,N-diallyl-N,N-dimethylammonium chloride-maleic acid copolymers of different compositions in solutions with various ionic-strength and pH values, as well as of the polyelectrolyte complex based on the copolymer with dodecyl sulfate anions in chloroform, are studied. For poly(N,N-diallyl-N,N-dimethylammonium chloride) molecules in a 1 M NaCl solution, the Kuhn segment length and the hydrodynamic diameter of the chain are estimated as A = 3.9 nm and d = 0.48 nm, respectively. In acidic solutions with pH 3.5, the copolymers demonstrate behavior typical for polyelectrolytes. In an alkaline solution with pH 13, when 1 M NaCl is added to the solution of the copolymer containing 29 mol % maleic acid units, there is an antipolyelectrolyte effect that manifests itself as an increase in the intrinsic viscosity of the copolymer and in the hydrodynamic radius of its molecules. It is found that an increase in the fraction of maleic acid units in the copolymer from 12 to 42 mol % brings about a reduction in the equilibrium rigidity of its macromolecules from 4.1 to 2.2 nm. The equilibrium rigidity of polyelectrolyte-complex molecules is higher than that of initial copolymer molecules owing to steric interactions arising between the aliphatic chains of dodecyl sulfate anions. In an electric field, the molecules of the complex are oriented owing to the induced dipole moment resulting from the displacement of dodecyl sulfate anions along the chain contour.  相似文献   

8.
The composition of lipids from the aerial parts of two species of halophytes from the family Chenopodiaceae, Halostachys caspica C. A. Mey. and Halocharis hispida Bge. was determined. Neutral lipids (NL, 62.1 and 54.2%, respectively) dominated the total lipids (TL) of these plants. More than a third of the NL were esters of aliphatic alcohols and phytosterols (FAE). Fatty acids 16:0, 18:1, and 18:2 dominated the acids of FAE; 16:0, 18:1, and 18:3, the phospholipids. The principal fatty acids of glycolipids were unsaturated acids (68.3 and 75.1%) with linolenic acid dominating (44.9 and 43.5%). Presented at the 7th International Symposium on the Chemistry of Natural Compounds, Tashkent, October 16–18, 2007. Translated from Khimiya Prirodnykh Soedinenii, No. 3, pp. 276–278, May–June, 2009.  相似文献   

9.
Cellulases are the main components of enzyme complexes used in biotransformation processes of plant raw materials into valuable commercial products. Endoglucanase II (EG II) from the Penicillium verruculosum fungus was cloned into Penicillium canescens. The homogeneous recombinant EGII form is isolated and its properties are studied in comparison with the native enzyme. The N-glycosylation sites and the structure of the N-linked glycans are been determined using mass spectrometry. The biochemical and catalytic properties, as well as the N-glycosylation type of the obtained recombinant EGII form, appear to be close to the native enzyme. At the two potential N-glycosylation sites (N42 and N194) of both forms of the enzyme, N-linked high mannose glycans (or their enzymatic “trimming” products) according to the general formula (Man)1–9(GlcNAc)2 are detected. No glycosylation is found at the third potential site (N19).  相似文献   

10.
A new seco-kaurane type diterpenoid, ent-3,4-seco-17-oxo-kaur-4(19),15(16)-dien-3-oic acid, and a known compound, ent-3,4-seco-kaur-4(19),16(17)-dien-3-oic acid, were isolated from the stem bark of Croton oblongifolius. The structures of these compounds were established on the basis of spectroscopic data.  相似文献   

11.
A copolymer of N,N-diallyl-N,N-dimethylammonium chloride with maleic acid of constant composition was prepared under the conditions of radical initiation. The possibility of the functionalization of the copolymer with drugs containing amino groups by polymer-analogous transformations was examined. Conditions were found for preparing conjugates of the copolymer with isoniazid. The structures and the quantitative compositions of the conjugates were determined by 13С NMR spectroscopy, and the possibility of preparing conjugates with controlled drug content was demonstrated.  相似文献   

12.
The 5-aminolevulinate (ALA) synthase gene (hemA) from Agrobacterium radiobacter zju-0121, which was cloned previously in our laboratory, contains several rare codons. To enhance the expression of this gene, Escherichia coli Rosetta(DE3), which is a rare codon optimizer strain, was picked out as the host to construct an efficient recombinant strain. Cell extracts of the recombinant E. coli were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under the appropriate conditions. The results indicated that the activity of ALA synthase expressed in Rosetta(DE3)/pET-28a(+)-hemA was about 20% higher than that in E. coli BL21(DE3). Then the effects of precursors (glycine and succinate) and glucose, which is an inhibitor for ALA dehydratase as well as the carbon sources for cell growth, on the production of 5-aminolevulinate were investigated. Based on an optimal fed-batch culture system described in our previous work, up to 6.5 g/l (50 mM) ALA was produced in a 15-l fermenter.  相似文献   

13.

Background

The compounds 1,4-napthoquinone (1,4-NQ), bis-(2,4-dinitrophenyl)sulfide (2,4-DNPS), 4-nitrobenzothiadiazole (4-NBT), 3-dimethylaminopropiophenone (3-DAP) and menadione (MD) were tested for antimalarial activity against both chloroquine (CQ)-sensitive (D6) and chloroquine (CQ)-resistant (W2) strains of Plasmodium falciparum through an in vitro assay and also for analysis of non-covalent interactions with P. falciparum thioredoxin reductase (PfTrxR) through in silico docking studies.

Results

The inhibitors of PfTrxR namely, 1,4-NQ, 4-NBT and MD displayed significant antimalarial activity with IC50 values of?<?20 μM and toxicity against 3T3 cell line. 2,4-DNPS was only moderately active. In silico docking analysis of these compounds with PfTrxR revealed that 2,4-DNPS, 4-NBT and MD interact non-covalently with the intersubunit region of the enzyme.

Conclusions

In this study, tools for the identification of PfTrxR inhibitors using phenotyphic screening and docking studies have been validated for their potential use for antimalarial drug discovery project.
  相似文献   

14.
A number of (Z)-N,N-dialkyl- and (Z)-N-acyl-N-alkyl-O-methylnicotinamide oximes was synthesized. Their configuration was confirmed by the NOESY experiment. Evaluation of fungicidal activity of compounds obtained was performed.  相似文献   

15.
A gene encoding a novel (S)-specific NADH-dependent alcohol dehydrogenase (LK-ADH) was isolated from the genomic DNA of Lactobacillus kefir DSM 20587 by thermal asymmetric interlaced-polymerase chain reaction. The nucleotide sequence of (S)-LK-ADH gene (adhS) was determined, which consists of an open reading frame of 1,044 bp, coding for 347 amino acids with a molecular mass of 37.065 kDa. After a BLAST similarity search in GenBank database, the amino acid sequence of (S)-LK-ADH showed some homologies to several zinc containing medium-chain alcohol dehydrogenases. This novel gene was deposited into GenBank with the accession number of EU877965. adhS gene was subcloned into plasmid pET-28a(+), and recombinant (S)-LK-ADH was successfully expressed in E. coli BL21(DE3) by isopropyl-β-d-1-thiogalactopyranoside induction. Purified enzyme showed a high enantioselectivity in the reduction of acetophenone to (S)-phenylethanol with an ee value of 99.4%. The substrate specificity and cofactor preference of recombinant (S)-LK-ADH were also tested.  相似文献   

16.
17.
The production of extracellular cellulase-free xylanase from Trichoderma inhamatum was evaluated in liquid Vogel medium with different carbon sources as natural substrates and agricultural or agro-industrial wastes. Optimal production of 244.02 U/mL was obtained with xylan as carbon source, pH 6.0 at 25 degrees C, 120 rpm, and 60-h time culture. Optimal conditions for enzyme activity were 50 degrees C and pH 5.5. Thermal stability of T. inhamatum xylanolytic complex expressed as T1/2 was 2.2 h at 40 degrees C and 2 min at 50 degrees C. The pH stability was high from 4.0 to 11.0. These results indicate possible employment of such enzymatic complex in some industrial processes which require activity in acid pH, wide-ranging pH stability, and cellulase activity absence.  相似文献   

18.
A new flavonoid, kaempferol-3,4′-di-O-α-L-rhamnopyranoside (1), and three known flavonoids (2–4) were isolated from the aerial parts of T. communis L. The structure of the new compound was elucidated on the basis of spectroscopic data. Compounds 1 and 2 showed significant antioxidant activity (IC50 187.151 ± 0.821 μM, and 92.079±0.513 μM, respectively), whereas compounds 3 and 4 showed moderate activity in DPPH free radical scavenging assays. Published in Khimiya Prirodnykh Soedinenii, No. 3, pp. 295–297, May–June, 2009.  相似文献   

19.
Synthesis of amino acid conjugates of glycyrrhizic acid with the use of N-hydroxyphthalimide, N,N'-dicyclohexylcarbodiimide, and tert-butyl esters of L-amino acids (valine, isoleucine, phenylalanine, and methionine) was performed followed by deprotection with trifluoroacetic acid. The target amino acid conjugates were isolated by column chromatography on silica gel in 40–45% yield. The structure of the prepared compounds was confirmed by IR and 13C NMR spectroscopy.  相似文献   

20.
In the search for platelet-activating-factor (PAF) antagonists, two new lignan compounds were isolated from the leaves of Syringa reticulata Hara var. mandshurica. Their structures were elucidated as (7R,8S, 8'S)-3,4,3',4'-dimethylenedioxy-8,9-dihydroxy-8.8', 7-O-9'-lignan (mandshuricol A) and (7R,8S,8'S)-3',4'methylenedioxy-4-methoxy-3,8,9-trihydroxy-8.8', 7-O-9'-lignan (mandshuricol B), Mandshuricol A and B showed antagonistic activity on PAF in the [3H] PAF receptor binding assay with IC50 values of 4.8 × 10–5 M and 3.5 × 10–5 M, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号