首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The primary crystallization of molten alloy systems at high undercooling is studied by a precise quantitative analysis of the calorimetric signal obtained during the transformation in terms of the reaction rate under isothermal and continuous heating regimes. It is shown that, under specific conditions, namely, stoechiometric primary precipitates, generalized relationships for the crystallization enthalpy and the reaction rate may be obtained.  相似文献   

2.
Stress-induced crystallization in a rapidly stretched natural rubber gum vulcanizate has been studied using thermal techniques to follow the development of crystallinity. A special-purpose analog computer has been assembled and used on-line to process the thermal and mechanical data obtained in high speed tensile testing. Roughly first-order room temperature crystallization kinetics curves were obtained having time constants of 50–60 msec in the range of 400–540% extension. While the rate of this rapid, presumably primary crystallization appears rather insensitive to elongation in this limited range, the extent of crystallization at 400 msec increases smoothly from zero at 340% elongation to around 18% at 540% elongation. It is shown that our high-speed tensile tester can stretch this vulcanizate fast enough that most of the crystallization takes place after extension has been completed. Stress-strain curves obtained at this high rate are compared with those obtained at lower rates where crystallization takes place during the stretching.  相似文献   

3.
AlPO‐11 and SAPO‐11 are synthesized using microwave heating. The effects of precursor volume, reaction temperature, reactor geometry, stirring, applicator type and frequency on the microwave synthesis of SAPO‐11 and AlPO‐11 are studied. The nucleation time and crystallization rate are determined from crystallization curves for SAPO‐11 (and/or AlPO‐11), for the various parameters investigated. Increasing volume of the reacting material decreases the reaction rate of SAPO‐11 at 160°C. In particular, the nucleation time increases with increase in the reaction volume. Increasing the reaction temperature increases the crystallization rate and decreases the nucleation time, however it decreases the particle size. Nucleation of SAPO‐11 and AlPO‐11 under microwave heating is strongly dependant on the reaction temperature. Using wider geometry vessel (33 mm compared to 11 mm diameter) enhances the reaction rate, producing larger crystals in the same reaction time, even though the crystallization rate is decreased. The crystallization rate is enhanced by applicator type in the following order CEM MARS‐5 oven>CEM Discover “focused” system>monomode waveguide. Stirring the reacting solution during heating affects primarily the nucleation time. The effect of microwave frequency on the nucleation and growth of SAPO‐11 shows a dependence on the applicator type more than the specific frequency, for the frequency range 2.45–10.5 GHz. The difference between the crystallization rate observed at higher frequencies and that at 2.45 GHz maybe due to the multimode nature of the waveguide at frequencies above 2.45 GHz. Sweeping the microwave frequency linearly between 8.7 and 10.5 GHz at rates of 10 min?1 and 100 min?1 shows an intermediate crystallization curve to that for fixed frequencies of 2.45 GHz and that for 5.8, 8.7 and 10.5 GHz.  相似文献   

4.
A simple kinetic model of surface-induced glass crystallization is proposed. The grain size of glass powders, a constant density of surface nuclei and a steadily increasing temperature throughout the reaction are taken into account. The crystal growth rate and the density of surface nuclei can be estimated easily from overall kinetic curves (e.g. DTA curves) of powder of different grain size.The usefulness of the model is demonstrated in the case of the primary surface-induced crystallization of cordierite glass powders.  相似文献   

5.
A nucleation rate function is proposed for use in analyzing the overall crystallization kinetics of polymers. This function allows for the possibility that the nucleation rate varies substantially during the crystallization. This feature is particularly useful in analyzing nonisothermal crystallization, but it can be used to analyze isothermal crystallization as well. The nucleation rate function was used in the derivation of a modified transformation kinetics equation of the Avrami type. The modified Avrami equation was found to be suitable for kinetics analysis for the data obtained from nonisothermal crystallization at rapid cooling rates. Kinetics parameters used to describe nonisothermal crystallization under rapid cooling rates are presented and discussed. These include crystallization induction time, plateau (crystallization) temperature, crystallization half-time, crystallization rate constant, Avrami index, and newly defined quantities called nucleation index, geometric index, and nucleation rate constant. The procedure used to obtain the nucleation rate constant and nucleation index for the nucleation rate function is described and illustrated by application to the analysis of the crystallization kinetics of polypropylene. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35: 1077–1093, 1997  相似文献   

6.
用差热分析法系统地研究了Sr对Al-Si共晶、亚共晶及超共晶合金的动态凝固过程的影响。结果表明,Sr既可促进α-Al成核,使其初晶析出温度比二元合金中α-Al相析出温度明显提高,又能抑制初晶Si成核,使超共晶中初晶Si相析出温度较二元合金中Si的初晶的实际析出温度明显降低,还能促使共晶合金成核,使加Sr后的共晶析出温度明显提高。  相似文献   

7.
《Comptes Rendus Chimie》2016,19(4):475-485
This work focuses on different ways to improve the yield and/or the crystalline quality of EMT/FAU-type zeolite nanocrystal aggregates obtained in the presence of organic additive triethanolamine (TEA). The increase of the amount of aluminum reagent enhances the synthesis yield by a factor of 2.5 without affecting the crystallization rate and the microporous volume. On the other hand, the increase of the thermal treatment time allows to increase the synthesis yield, the crystallization rate and the microporous volume. Furthermore, addition of EMT zeolite seeds into the starting reaction medium improves the crystallization rate and the microporous volume.  相似文献   

8.
Syndiotactic 1,2-polybutadiene/organoclay nanocomposites were prepared and characterized by thermogravimetry analysis (TGA), X-ray diffraction (XRD), polarized optical microscopy (POM), and differential scanning calorimetry (DSC), respectively. The XRD shows that exfoliated nanocomposites are formed dominantly at lower clay concentrations (less than 2%), at higher clay contents intercalated nanocomposites dominate. At the same time, the XRD indicates that the crystal structures of sPB formed in the sPB/organoclay nanocomposites do not vary, only the relative intensity of the peaks corresponding to (0 1 0) and (2 0 0)/(1 1 0) crystal planes, respectively, varies. The DSC and POM indicate that organoclay layers can improve cooling crystallization temperature, crystallization rate and reducing the spherulite sizes of sPB. TGA shows that under argon flow the nanocomposites exhibit slight decrease of thermal stability, while under oxygen flow the resistance of oxidation and thermal stability of sPB/organoclay nanocomposites were significantly improved relative to pristine sPB. The primary and secondary crystallization for pristine sPB and sPB/organoclay (2%) nanocomposites were analyzed and compared based on different approaches. The nanocomposites exhibit smaller Avrami exponent and larger crystallization rate constant, with respect to pristine sPB. Primary crystallization under isothermal conditions displays both athermal nucleation and three-dimensional spherulite growth and under nonisothermal processes the mechanism of primary crystallization becomes very complex. Secondary crystallization shows a lower-dimensional crystal growth geometry for both isothermal and nonisothermal conditions. The activation energy of crystallization of sPB and sPB/organoclay nanocomposites under isothermal and nonisothermal conditions were also calculated based on different approaches.  相似文献   

9.
Classical kinetic theories of polymer crystallization were applied to isothermal crystallization kinetics data obtained by polarized optical microscopy (PLOM) and differential scanning calorimetry (DSC). The fitted parameters that were proportional to the energy barriers obtained allow us to quantitatively estimate the nucleation and crystal growth contributions to the overall energy barrier associated to the crystallization process. It was shown that the spherulitic growth rate energy barrier found by fitting PLOM data is almost identical to that obtained by fitting the isothermal DSC crystallization data of previously self‐nucleated samples. Therefore, we demonstrated that by self‐nucleating the material at the ideal self‐nucleation (SN) temperature, the primary nucleation step can be entirely completed and the data obtained after subsequent isothermal crystallization by DSC contains only contributions from crystal growth or secondary nucleation. In this way, by employing SN followed by isothermal crystallization, we propose a simple method to obtain separate contributions of energy barriers for primary nucleation and for crystal growth, even in the case of polymers where PLOM data are very difficult to obtain (because they exhibit very small spherulites). Comparing the results obtained with poly(p‐dioxanone), poly(ε‐caprolactone), and a high 1,4 model hydrogenated polybutadiene, we have interpreted the differences in primary nucleation energy barriers as arising from differences in nuclei density. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1478–1487, 2008  相似文献   

10.
A short and simple synthesis of nematic polycyclic hydrocarbon is described. In the key step, the dialkylated aromatic precursors are perhydrogenated under equilibrating conditions. The desired (all-trans) isomer which is the major product of the reaction is readily obtained by crystallization.  相似文献   

11.
The quiescent crystallization of several polypropylenes (PPs) was examined using Differential Scanning Calorimetry (DSC) and Polarized Optical Microscopy (POM). The half‐times of crystallization were obtained from the DSC thermographs employing the Avrami/Nakamura equation to fit and predict crystallization kinetics under isothermal and nonisothermal conditions. The induction times under nonisothermal conditions were estimated from isothermal crystallization data and used in conjunction with the Nakamura model in order to capture the crystallization behavior of the studied PPs. The Avrami/Nakamura model is found to fit and predict the nonisothermal crystallization data of the various PPs well over a range of cooling rates supporting its use in the simulation of polymer processes of industrial relevance. POM was used in line with parallel plate rheometry (Anton Paar, MCR 502) under no flow conditions to study the shape and growth rate of crystals of various PP resins at different temperatures or cooling rates. The growth rate of crystals is impeded exponentially with increase of temperature. The various PP resins of different molecular architecture have shown different nucleation and growth rate characteristics behavior under similar processing conditions. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 1259–1275  相似文献   

12.
Secondary crystallization of PEA, occurring during DSC scan and performed after isothermal primary crystallization has been investigated. The high temperature exotherm peak has been attributed to the crystallization of amorphous fraction included between crystallites formed at the primary crystallization. The temperature position of the highest rate of the secondary crystallization depended on the temperature of the isothermal primary crystallization.  相似文献   

13.
The effect of the incorporation of an amorphous immiscible polymer (ethylene-propylene-diene- terpolymer) on the PP crystallization kinetics and thermodynamics is investigated by thermal analysis. The results of the investigation have shown that EPDM acts as a nucleant agent. A marked decrease of the half time of PP crystallization, τ1/2 , as well as a sensible increase of the overall crystallization rate, K n , has been observed in the presence of EPDM. Moreover, at any crystallization temperature, a minimum of τ1/2 , is obtained at 25% EPDM content in the blend. The Avrami model has been successfully applied to describe the crystallization kinetics of the blend. The kinetic curves obtained under non-isothermal conditions confirm the results obtained under isothermal conditions and demonstrate the nucleant action of the EPDM phase on the PP crystallization. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
The oxidation of α,β-unsaturated primary and secondary alcohols to corresponding aldehydes and ketones by manganese dioxide in ionic liquids as a safe recyclable and accelerative reaction medium under mild conditions are described. The rate of the oxidation reaction is faster and the yield is higher than that with conventional procedures.  相似文献   

15.
Melt crystallization of poly(vinylidene fluoride) (PVF2) under a static electric field was studied by optical microscopy. For most crystallization temperatures a mixture of α and γ spherulites was obtained. The growth rate of the spherulites was measured in the plane perpendicular to the direction of the field. The effect of an electric field on the growth rate of the γ spherulites corresponds in a qualitative way with the dependence predicted theoretically for the primary nucleation of the nonpolar form. It is shown, that the growth rate of γ spherulites is always reduced by the electric field. This reduction was larger the lower the undercooling. In the case of γ spherulites the interpretation of the results is more complicated. Both the morphology and the growth rate of γ spherulites under an electric field depend on electrode configuration. An increase of the growth rate of γ spherulites in an electric field was detected only when the sample was in direct contact with both electrodes. Under these circumstances, γ spherulites nucleate and grow at the PVF2-positive electrode interface; and the increase of the growth rate is higher the lower the undercooling, and is greater in comparison with the decrease found for the nonpolar α phase. The reason for the sensitivity of the morphology of the γ form to the electrode configuration is not completely clear. © 1994 John Wiley & Sons, Inc.  相似文献   

16.
This article is part of the general project laid out in Part I (ref. 9) and is concerned with obtaining information on primary (unthickened) crystals of polyethylene formed at low supercoolings. For this, a technique had to be devised by which crystallization could be speeded up so as to eliminate or at least reduce lamellar thickening. Indeed we were able to increase the rate of crystallization by an order of magnitude using a technique which we have called enhanced self-nucleation. Using this technique we find that when viewed under an optical microscope, spherulites crystallize uniformly over the field of view, and not, as is usual, by a radial growth process. Isothermal crystallization in bulk linear polyethylene has been studied by means of the enhanced self-nucleation technique as a function of crystallization time by using Raman LAM and melting points to assess variations of fold length Data have been obtained at very much shorter times than before. At short times, we find a constant fold length; at longer times the crystals thicken linearly with the logarithm of time. Values of the initial fold length for crystallization temperatures between 118 and 130°C are presented. Associated with the thickening at short times we find an induction time which increases with temperature.  相似文献   

17.
This article describes the development of reliable techniques to measure the isothermal crystallization rates (ICR) under quiescent as well as under small amplitude, oscillatory shear conditions. Quiescent crystallization rates were obtained using a differential scanning calorimeter. Those under small amplitude shear were obtained using Rheometrics rheometers. It is shown how a small amount of long-chain branching in high-density polyethylene homopolymer (HDPE) dramatically influences rheological properties and enhances ICR. For these HDPEs, the rate increases with the increase in long-chain branching. The general application of isothermal crystallization studies, however, should be done with great caution. This is because the fundamentals of isothermal crystallization require that it be done on the basis of a fixed undercooling with respect to the equilibrium melting temperature. Such a temperature is ill-defined for the commercial polymers having broad molecular weight distribution (MWD). Nonetheless, a practical procedure is outlined wherein the melting curve of a previously isothermally crystallized sample is used as a substitute for judging the equilibrium melting point and in deciding the selection of a proper crystallization temperature. Even this new procedure may not be applicable for polymers having heterogeneous short-chain branching distribution. © 1996 John Wiley & Sons, Inc.  相似文献   

18.
Lysine, which is an amino acid with a basic side group, is present in biological fluids and its role in the biological calcification process was investigated. It was found to inhibit the crystal growth rate of hydroxyapatite (HAP), in solutions supersaturated only with respect to this calcium phosphate salt and this rate reduction was attributed to adsorption and further blocking of the active growth sites on the crystal surface. The crystallization kinetics were interpreted in terms of the Langmuir adsorption model. The apparent order of the crystallization reaction was found to be n=2, suggesting a surface diffusion controlled spiral growth mechanism. Kinetic results of HAP crystallization were obtained using the constant composition method where the concentration of the reactants is kept constant during the course of the crystal growth experiment. Copyright 2000 Academic Press.  相似文献   

19.
FORTRAN software is described which enables the generation of rate of weight change data (DTG) from percentage weight change measurements (TG), obtained under non-isothermal conditions. The program also transposes this information into the dimensionless extent and rate of reaction at unit temperature intervals by means of a cubic spline interpolation. A simple search routine identifies all DTG spikes in the thermogravimetric record, and the temperature and extent of reaction at which the rate attains its maximum value. This total information serves as input data for the kinetic analysis software to be discussed in part II of this communication. An example of the application of this program to the pyrolysis of bituminous coal is presented.  相似文献   

20.
Isothermal crystallization kinetics of a new sequential poly(ester amide) derived from glycine, 1,4‐butanediol, and adipic acid was investigated with differential scanning calorimetry and optical microscopy. The Avrami analysis was performed to obtain the kinetic parameters of primary and secondary crystallization. The experimental data indicate a heterogeneous nucleation with spherical growth geometry for the primary crystallization, whereas a linear growth within formed spherulites is characteristic of the last crystallization stages. The Lauritzen–Hoffman analysis was also undertaken to determine the different crystallization regimes, having estimated the corresponding nucleation constants. Temperature dependence of the normalized crystallization‐rate constants was tested with different theoretical equations. These allow an estimation of a temperature close to 90 °C for the maximum crystallization rate. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 903–912, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号