首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The alkaline hydrolysis of title esters possessing acidic leaving groups follows an E1cB mechanism involving the participation of an "extra extended" p-oxo ketene intermediate. For the hydrolysis of the 2,4-dinitrophenyl ester kinetic data, activation parameters and trapping of the intermediate clearly indicate that the dissociative pathway carries the reaction flux. Break in the Bronsted plot of the apparent second-order rate constants versus the pK(a) of the leaving group suggests that the reaction mechanism changes from E1cB to B(Ac)2 for esters having pK(a) higher than about 6.  相似文献   

2.
The alkaline hydrolysis of the title esters, possessing three conjugated pi units between the internal nucleophile (the hydroxyl group) and the reaction center, follows an E1cB mechanism involving the participation of an "extra extended" p-oxo azoketene type intermediate. For the hydrolysis of the 2,4-dinitrophenyl ester kinetic data, activation parameters and trapping of the intermediate are consistent with a dissociative pathway carrying the reaction flux. The effect of the leaving group variation on reactivity agrees with the proposed mechanism, and the existence of an intermediate is also supported by diode array stopped-flow experiments. The presence of sp(2) nitrogen atoms in the conjugated backbone is beneficial to the dissociative mechanism.  相似文献   

3.
Selective addition of the chiral, sulfonimidoyl substituted bis(allyl)titanium complexes 5a-d, which are configurationally labile in regard to the Calpha-atoms, to N-toluenesulfonyl (Ts)-, N-2-trimethylsilylethanesulfonyl (SES)-, and N-tert-butylsulfonyl (Bus) alpha-imino ester (9a-c) in the presence of Ti(OiPr)(4) and ClTi(OiPr)(3) afforded with high regio- and diastereoselectivities in good yields the (syn, E)-configured beta-alkyl-gamma,delta-unsaturated alpha-amino acid derivatives 2a-g, which carry a chiral, electron-withdrawing nucleofuge at the delta-position and a cyclohexyl, an isopropyl, a phenyl, and a methyl group at the beta-position. Addition of the cyclic bis(allyl)titanium complex 14 to N-Bus alpha-imino ester 9c afforded with similar high regio- and diastereoselectivities the (E)- and (Z)-configured amino acid derivatives (E)-8 and (Z)-8. Reaction of complexes 5a-d with alpha-imino esters 9a-c in the presence of Ti(OiPr)(4) occurs stepwise to give first the mono(allyl)titanium complexes containing 2a-g as ligands, which react in the presence of ClTi(OiPr)(3) with a second molecule of 9a-c with formation of two molecules of 2a-g. Formation of (S,R,E)-configured homoallylic amines 2a-g entails Si,Re,E processes of alpha-imino esters 9a-c with the (R,R)-configured bis(allyl)titanium complexes (R,R)-5a-d and (R)-configured mono(allyl)titanium complexes (R)-17a-d, both of which are most likely in rapid equilibrium with their (S,S)-diastereomers and (S)-diastereomers, respectively. Interestingly, in the reaction of 5a-d with aldehydes, the (S,S)-configured complexes (S,S)-5a-d are the ones which react faster. Reaction of the N-titanated amino acid derivatives Ti-2a and Ti-2b with N-Ts alpha-imino ester 9a led to the highly diastereoselective formation of imidazolidinones 15a and 15b, respectively. Cleavage of the sulfonamide group of the N-Bus amino acid derivative 2d with CF(3)SO(3)H gave quantitatively the sulfonimidoyl functionalized amino acid H-2d. A Ni-catalyzed cross-coupling reaction of the amino acid derivative 2e with ZnPh(2) led to a substitution of the sulfonimidoyl group by a phenyl group and furnished the enantiomerically pure protected alpha-amino acid Bus-1. Two new N-sulfonyl alpha-imino esters, the SES and the Bus alpha-imino esters 9b and 9c, respectively, have been synthesized from the corresponding sulfonamides by the Kresze method in medium to good yields. The N-SES alpha-imino ester 9b and the N-Bus alpha-imino ester 9c should find many synthetic applications, in particular, in cases where the N-Ts alpha-imino ester 9a had been used before.  相似文献   

4.
Plots of log k(0) vs pH for the cyclization of trifluoroethyl and phenyl 2-aminomethylbenzoate to phthalimidine at 30 degrees C in H(2)O are linear with slopes of 1.0 at pH >3. The values of the second-order rate constants k(OH) for apparent OH(-) catalysis in the cyclization reactions are 1.7 x 10(5) and 5.7 x 10(7) M(-)(1) s(-)(1), respectively. These rate constants are 10(5)- and 10(7)-fold greater than for alkaline hydrolysis of trifluoroethyl and phenyl benzoate. The k(OH) for cyclization of the methyl ester is 7.2 x 10(3) M(-)(1) s(-)(1). Bimolecular general base catalysis occurs in the intramolecular nucleophilic reactions of the neutral species. The value of the Bronsted coefficient beta for the trifluoroethyl ester is 0.7. The rate-limiting step in the general base catalyzed reaction involves proton transfer in concert with leaving group departure. The mechanism involving rate-determining proton transfer exemplified by the methyl ester in this series (beta = 1.0) can then be considered a limiting case of the concerted mechanism. General acid catalysis of the neutral species reaction or a kinetic equivalent also occurs when the leaving group is good (pK(a) 相似文献   

5.
Results from first-principles calculations present a rather clear picture of the interaction of SO(2) with unreduced and partially reduced (111) and (110) surfaces of ceria. The Ce(3+)∕Ce(4+) redox couple, together with many oxidation states of S, give rise to a multitude of SO(x) species, with oxidation states from +III to +VI. SO(2) adsorbs either as a molecule or attaches via its S-atom to one or two surface oxygens to form sulfite (SO(3)(2-)) and sulfate (SO(4)(2-)) species, forming new S-O bonds but never any S-Ce bonds. Molecular adsorption is found on the (111) surface. SO(3)(2-) structures are found on both the (111) and (110) surfaces of both stoichiometric and partially reduced ceria. SO(4)(2-) structures are observed on the (110) surface together with the formation of two reduced Ce(3+) surface cations. SO(2) can also partially heal the ceria oxygen vacancies by weakening a S-O bond, when significant electron transfer from the surface (Ce4f) into the lowest unoccupied molecular orbital of the SO(2) adsorbate takes place and oxidizes the surface Ce(3+) cations. Furthermore, we propose a mechanism that could lead to monodentate sulfate formation at the (111) surface.  相似文献   

6.
Rate constants have been obtained for the hydrolysis of the trifluoroethyl, phenyl, and p-nitrophenyl esters of 2-aminobenzoic acid at 50 degrees C in H(2)O. The pseudo-first-order rate constants, k(obsd), are pH independent from pH 8 to pH 4 (the pK(a) of the amine group conjugate acid). The 2-aminobenzoate esters hydrolyze with similar rate constants in the pH-independent reactions, and these water reactions are approximately 2-fold slower in D(2)O than in H(2)O. The most likely mechanism involves intramolecular general base catalysis by the neighboring amine group. The rate enhancements in the pH-independent reaction in comparison with the pH-independent hydrolysis of the corresponding para substituted esters or the benzoate esters are 50-100-fold. In comparison with the hydroxide ion catalyzed reaction, the enhancement in k(obsd) at pH 4 with the phenyl ester is 10(5)-fold. Intramolecular general base catalyzed reactions are assessed in respect to their relative advantages and disadvantages in enzyme catalysis. A general base catalyzed reaction can be more rapid at low pH than a nucleophilic reaction that has a marked dependence on pH and the leaving group.  相似文献   

7.
Sulfur K-edge X-ray absorption near-edge structure (XANES) spectra have been recorded and the S(1s) electron excitations evaluated by means of density functional theory-transition potential (DFT-TP) calculations to provide insight into the coordination, bonding, and electronic structure. The XANES spectra for the various species in sulfur dioxide and aqueous sodium sulfite solutions show considerable differences at different pH values in the environmentally important sulfite(IV) system. In strongly acidic (pH < approximately 1) aqueous sulfite solution the XANES spectra confirm that the hydrated sulfur dioxide molecule, SO2(aq), dominates. The theoretical spectra are consistent with an OSO angle of approximately 119 degrees in gas phase and acetonitrile solution, while in aqueous solution hydrogen bonding reduces the angle to approximately 116 degrees . The hydration affects the XANES spectra also for the sulfite ion, SO32-. At intermediate pH ( approximately 4) the two coordination isomers, the sulfonate (HSO3-) and hydrogen sulfite (SO3H-) ions with the hydrogen atom coordinated to sulfur and oxygen, respectively, could be distinguished with the ratio HSO3-:SO3H- about 0.28:0.72 at 298 K. The relative amount of HSO3- increased with increasing temperature in the investigated range from 275 to 343 K. XANES spectra of sulfonate, methanesulfonate, trichloromethanesulfonate, and trifluoromethanesulfonate compounds, all with closely similar S-O bond distances in tetrahedral configuration around the sulfur atom, were interpreted by DFT-TP computations. The energy of their main electronic transition from the sulfur K-shell is about 2478 eV. The additional absorption features are similar when a hydrogen atom or an electron-donating methyl group is bonded to the -SO3 group. Significant changes occur for the electronegative trichloromethyl (Cl3C-) and trifluoromethyl (F3C-) groups, which strongly affect the distribution especially of the pi electrons around the sulfur atom. The S-D bond distance 1.38(2) A was obtained for the deuterated sulfonate (DSO3-) ion by Rietveld analysis of neutron powder diffraction data of CsDSO3. Raman and infrared absorption spectra of the CsHSO3, CsDSO3, H3CSO3Na, and Cl3CSO3Na.H2O compounds and Raman spectra of the sulfite solutions have been interpreted by normal coordinate calculations. The C-S stretching force constant for the trichloromethanesulfonate ion obtains an anomalously low value due to steric repulsion between the Cl3C- and -SO3 groups. The S-O stretching force constants were correlated with corresponding S-O bond distances for several oxosulfur species.  相似文献   

8.
Nearly all of the reported studies of reactions of sulfate diesters are for dialkyl or alkyl aryl diesters, which undergo reaction by carbon-oxygen bond fission. Sulfuryl transfer reactions of sulfate diesters (RO-SO(2)-OR') proceeding by attack at sulfur have been little explored. When both ester groups are aryl groups the hydrolysis reaction (sulfuryl transfer to water) occurs by way of attack at sulfur. The alkaline hydrolysis of diaryl sulfate diesters was shown to obey first-order kinetics with respect to [(-)OH] and proceed through S-O bond fission, in a mechanism that is most likely concerted. Activation parameters for 4-chloro-3-nitrophenyl phenyl sulfate and 4-nitrophenyl phenyl sulfate gave the following respective values: Delta H(++) = 88.0 +/- 0.1 and 84.83 +/- 0.06 kJ mol(-)(1) and Delta S(++) = -37 +/- 1 and -50.2 +/- 0.5 J mol(-)(1) deg(-)(1). The dependence of the second-order rate constant for hydrolysis on leaving group pK(a) was analyzed giving a beta(lg) slope of -0.7 +/- 0.2 and a Leffler alpha parameter value of 0.36. A (15)k kinetic isotope effect (KIE) for the hydroxide attack on 4-nitrophenyl phenyl sulfate of 1.0000 +/-0.0005 and an (18)k(lg) KIE value of 1.003+/-0.002 were obtained.  相似文献   

9.
Alkyl 2,2,2-trifluoroethanesulfonate esters (tresylates), ROSO(2)CH(2)CF(3), react with aqueous base (pH >/= 9) to give the (alkoxysulfonyl)acetic acid, ROSO(2)CH(2)COOH; with the further addition of either a primary or secondary amine or of an alkanethiol, the product is the either the corresponding amide, ROSO(2)CH(2)C(O)NR(1)R(2), or a mixture in which the ketene dithioacetal, ROSO(2)CH=C(SR(1))(2), or the thioorthoester, ROSO(2)CH(2)C(SR(1))(3), may predominate. Kinetic and product studies are consistent with the following: (a) the reaction of tresylates with water is the normal sulfonic ester hydrolysis and (b) reaction with hydroxide is an (E1cB)(rev) process with loss of HF to yield the alkyl 2,2-difluoroethenesulfonate, ROSO(2)CH=CF(2), which rapidly yields the observed products. Benzyl 2,2,2-trifluoroethyl sulfone reacts analogously. The relationship between these observation with small molecules and those of earlier workers with tresyl agarose is discussed.  相似文献   

10.
The final step in the degradation of heparin sulfate involves the enzymatic hydrolysis of its 2-sulfamido groups. To evaluate the power of the corresponding sulfamidases as catalysts, we examined the reaction of N-neopentyl sulfamate at elevated temperatures and found it to undergo specific acid catalyzed hydrolysis even at alkaline pH. A rate constant of 10(-16) s(-1) was calculated using the Eyring equation for water attack on the N-protonated species at pH 7, 25 °C. As a model for the pH neutral reaction, a rate constant for hydroxide attack on (CH(3))(3)CCH(2)N(+)H(2)SO(3)(-) at pH 7, 25 °C was calculated to be 10(-19) s(-1). The corresponding rate enhancement (k(cat)/k(non)) produced by the N-sulfamidase of F. heparinum is approximately 10(16)-fold, which is somewhat larger than those generated by most hydrolytic enzymes but considerably smaller than those generated by S-O cleaving sulfatases.  相似文献   

11.
Methyl ester of abscisic acid (ABA), a plant hormone, gives a dehydrated ion at m/z 260 in electron ionization mass spectrometry (EI-MS). This dehydrated ion had been considered to be derived only from the elimination of the tertiary hydroxyl group at C-1'. We found that 34% of the dehydrated ion was formed by elimination of the oxygen atom at the 4'-carbonyl group, and the remaining 66% by elimination of the 1'-hydroxyl group. This unusual elimination of the carbonyl oxygen was shown with [4'-(18)O]ABA methyl ester. Involvement of the 4'-carbonyl oxygen in dehydration was observed in methyl ester of phaseic acid (PA), a natural metabolite of ABA, but not in 1'-deoxy-ABA methyl ester or isophorone. This suggested that the 1'-hydroxyl group was necessary for the elimination of the 4'-carbonyl oxygen. ABA methyl esters labeled with stable isotopes showed that hydrogen atoms at the 1'-hydroxyl group and at C-4 or -5 or -3' or - 5' or -7' were eliminated with the 4'-carbonyl oxygen. These results allow us to propose a formation mechanism of the dehydrated ion derived from the elimination of 4'-carbonyl oxygen and hydrogen atoms at C-4 and 1'-oxygen in ABA methyl ester as follows: first, ionization at the 1'-hydroxyl group occurs to give an ion radical, and the proton at the 1'-oxygen migrates to the 4'-carbonyl oxygen after the bond fission between C-1'-C-6'; second, migration of the proton at C-4 to the 1'-oxygen is followed by migration of the protons at C-5 and C-7' to C-4 and C-5, respectively; finally, the proton at the 1'-oxygen migrates to the 4'-hydroxyl group, and H(2)O at C-4' is eliminated to give the dehydrated ion. Our findings point out that a dehydrated ion is not always derived from the elimination of a hydroxyl group.  相似文献   

12.
Phosphorothioate esters are sometimes used as surrogates for phosphate ester substrates in studies of enzymatic phosphoryl transfer reactions. To gain better understanding of the comparative inherent chemistry of the two types of esters, we have measured equilibrium and kinetic isotope effects for several phosphorothioate esters of p-nitrophenol (pNPPT) and compared the results with data from phosphate esters. The primary (18)O isotope effect at the phenolic group ((18)k(bridge)), the secondary nitrogen-15 isotope effect ((15)k) in the nitro group, and (for the monoester and diester) the secondary oxygen-18 isotope effect ((18)k(nonbridge)) in the phosphoryl oxygens were measured. The equilibrium isotope effect (EIE) (18)k(nonbridge) for the deprotonation of the monoanion of pNPPT is 1.015 +/- 0.002, very similar to values previously reported for phosphate monoesters. The EIEs for complexation of Zn(2+) and Cd(2+) with the dianion pNPPT(2-) were both unity. The mechanism of the aqueous hydrolysis of the monoanion and dianion of pNPPT, the diester ethyl pNPPT, and the triester dimethyl pNPPT was probed using heavy atom kinetic isotope effects. The results were compared with the data reported for analogous phosphate monoester, diester, and triester reactions. The results suggest that leaving group bond fission in the transition state of reactions of the monoester pNPPT is more advanced than for its phosphate counterpart pNPP, while alkaline hydrolysis of the phosphorothioate diester and triester exhibits somewhat less advanced bond fission than that of their phosphate ester counterparts.  相似文献   

13.
Phenyl cations are smoothly generated by the photoheterolytic cleavage of an Ar-LG bond (LG = leaving group). With the aim of evaluating the scope of the method, a series of 4-methoxy-2-(trimethylsilyl)phenyl derivatives (sulfonic, LG = MeSO(3) and CF(3)SO(3), phosphate, LG = (EtO)(2)(O)PO esters and the corresponding chloride) have been compared as probes for evaluating the leaving group ability. The photocleavage was a general reaction, with the somewhat surprising order (EtO)(2)(O)PO ~ Cl > CF(3)SO(3) > MeSO(3) (Φ = 0.50 to 0.16 in CF(3)CH(2)OH and lower values in MeCN-H(2)O). The ensuing reactions did not depend on the LGs but only on the structure of the phenyl cation (the silyl group tuned the triplet to singlet intersystem crossing and the electrophilicity) and on the medium (formation of a complex with water slowed the electrophilic reactions).  相似文献   

14.
The chlorine leaving group isotope effect has been measured for the base-promoted elimination reaction of 1-(2-chloro-2-propyl)indene (1-Cl) in methanol at 30 degrees C: k(35)/k(37) = 1.0086 +/- 0.0007 with methoxide as the base and k(35)/k(37) = 1.0101 +/- 0.0001 with triethylamine (TEA) as the base. These very large chlorine isotope effects combined with large kinetic deuterium isotope effects of 7.1 and 8.4, respectively, are consistent not with the irreversible E1cB mechanism proposed previously (J. Am. Chem. Soc. 1977, 99, 7926) but with the E2 mechanism with transition states having large amounts of hydron transfer and very extensive cleavage of the bond to chlorine.  相似文献   

15.
An ab initio Quantum Mechanical Charge Field Molecular Dynamics Simulation (QMCF MD) was performed to investigate structure and dynamics behavior of hydrated sulfur dioxide (SO(2)) at the Hartree-Fock level of theory employing Dunning DZP basis sets for solute and solvent molecules. The intramolecular structural characteristics of SO(2), such as S═O bond lengths and O═S═O bond angle, are in good agreement with the data available from a number of different experiments. The structural features of the hydrated SO(2) were primarily evaluated in the form of S-O(wat) and O(SO(2))-H(wat) radial distribution functions (RDFs) which gave mean distances of 2.9 and 2.2 ?, respectively. The dynamical behavior characterizes the solute molecule to have structure making properties in aqueous solution or water aerosols, where the hydrated SO(2) can easily get oxidized to form a number of sulfur(VI) species, which are believed to play an important role in the atmospheric processes.  相似文献   

16.
Although aryl phosphates have been the subject of numerous experimental studies, far less data bearing on the mechanism and transition states for alkyl phosphate reactions have been presented. Except for esters with very good leaving groups such as 2,4-dinitrophenol, the monoanion of phosphate esters is more reactive than the dianion. Several mechanisms have been proposed for the hydrolysis of the monoanion species. (18)O kinetic isotope effects in the nonbridging oxygen atoms and in the P-O(R) ester bond, and solvent deuterium isotope effects, have been measured for the hydrolysis of m-nitrobenzyl phosphate. The results rule out a proposed mechanism in which the phosphoryl group deprotonates water and then undergoes attack by hydroxide. The results are most consistent with a preequilibrium proton transfer from the phosphoryl group to the ester oxygen atom, followed by rate-limiting P-O bond fission, as originally proposed by Kirby and co-workers in 1967. The transition state for m-nitrobenzyl phosphate (leaving group pK(a) 14.9) exhibits much less P-O bond fission than the reaction of the more labile p-nitrophenyl phosphate (leaving group pK(a) = 7.14). This seemingly anti-Hammond behavior results from weakening of the P-O(R) ester bond resulting from protonation, an effect which calculations have shown is much more pronounced for aryl phosphates than for alkyl ones.  相似文献   

17.
Second-order rate constants have been measured for the reaction of 2,4-dinitrophenyl X-substituted benzenesulfonates with a series of primary amines. The nucleophilic substitution reaction proceeds through competitive S-O and C-O bond fission pathways. The S-O bond fission occurs dominantly for reactions with highly basic amines or with substrates having a strong electron-withdrawing group in the sulfonyl moiety. On the other hand, the C-O bond fission occurs considerably for the reactions with low basic amines or with substrates having a strong electron-donating group in the sulfonyl moiety, emphasizing that the regioselectivity is governed by both the amine basicity and the electronic effect of the sulfonyl substituent X. The apparent second-order rate constants for the S-O bond fission have resulted in a nonlinear Br?nsted-type plot for the reaction of 2,4-dinitrophenyl benzenesulfonate with 10 different primary amines, suggesting that a change in the rate-determining step occurs upon changing the amine basicity. The microscopic rate constants (k(1) and k(2)/k(-)(1) ratio) associated with the S-O bond fission pathway support the proposed mechanism. The second-order rate constants for the S-O bond fission result in good linear Yukawa-Tsuno plots for the aminolyses of 2,4-dinitrophenyl X-substituted benzenesulfonates. However, the second-order rate constants for the C-O bond fission show no correlation with the electronic nature of the sulfonyl substituent X, indicating that the C-O bond fission proceeds through an S(N)Ar mechanism in which the leaving group departure occurs rapidly after the rate-determining step.  相似文献   

18.
The reactions of aryl benzenesulfonates (YC6H4SO2OC6H4Z) with benzylamines (XC6H4CH2NH2) in acetonitrile at 65.0 degrees C have been studied. The reactions proceed competitively by S-O (kS-O) and C-O (kC-O) bond scission, but the former provides the major reaction pathway. On the basis of analyses of the Hammett and Br?nsted coefficients together with the cross-interaction constants rho(XY), rho(YZ), and rho(XZ), stepwise mechanisms are proposed in which the S-O bond cleavage proceeds by rate-limiting formation of a trigonal-bipyramidal pentacoordinate (TBP-5C) intermediate, whereas the C-O bond scission takes place by rate-limiting expulsion of the sulfonate anion (YC6H4SO3-) from a Meisenheimer-type complex.  相似文献   

19.
The reaction of imidazole in aqueous solution with toluene-4-sulfonate salts of substituted phenyl N-methylpyridinium-4-carboxylate esters obeys the rate law: k(obs) - k(background) = k2[Im] + k3[Im]2 where [Im] is the imidazole concentration present as free base. The parameters k2 and k3 fit Br?nsted type free energy correlations against the pKa of the leaving phenol with betaLg values of -0.65 and -0.42 respectively. The imidazolysis is insensitive to catalysis by general bases and yet k3 for the 3-cyanophenyl ester possesses a deuterium oxide solvent isotope effect of 4.43 consistent with rate limiting proton transfer. A special catalytic function is proposed for decomposition of the tetrahedral addition intermediate (T+/-) via k3 whereby the catalytic imidazole interacts electrophilically with the leaving phenolate ion and removes a proton from the nitrogen in the rate limiting step with subsequent non-rate limiting ArO-C bond fission. This is consistent with the change in effective charge on the leaving oxygen in the transition structure of k3 which is more positive (-0.42) than that expected (-0.60) for the equilibrium formation of the zwitterion intermediate. The catalytic function at the leaving oxygen is likely to be an electrophilic role of the NH as a hydrogen bond donor. In the k2 step the deuterium oxide solvent isotope effect of 1.51 for the 3-cyanophenyl ester and the betaLg of -0.65 are consistent with rate limiting expulsion of the phenolate ion from the T+/- intermediate. The absence of general base catalysis of imidazolysis rules out the established mechanism for aminolysis of esters where T+/- is stabilised by a standard rate limiting proton transfer. The kinetically equivalent term for k3 where T- reacts with the imidazolium ion as an acid catalyst would require this step to be rate limiting and involve proton transfer not consistent with departure of the good aryl oxide leaving group.  相似文献   

20.
Well-defined decanoyl triethylene glycol ester and decanoyl tetraethylene glycol ester were synthesized and compared to their ether counterparts (C(10)E(4) and C(10)E(3)). Their physicochemical properties i.e. critical micelle concentrations (CMC), cloud points, and equilibrium surface tensions were determined. Binary water-surfactant phase behavior was also studied by polarized optical microscopy. The stability of the ester bond was determined by investigating alkaline hydrolysis of the compounds. It was found that CMC, cloud point and equilibrium surface tension are roughly the same for corresponding ethers and esters. In the binary diagram, the esters form only lamellar phases, the area of which is smaller than that of the ether counterparts. These different behaviors can be related to the modification of the molecular conformation induced by the replacement of the ether group by the ester group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号