首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Using molecular dynamics (MD), we have studied the mechanism of heat accommodation between carbon dioxide clusters and monomers for temperatures and cluster size conditions that exist in homogeneous condensing supersonic expansion plumes. The work was motivated by our meso-scale direct simulation Monte Carlo and Bhatnagar-Gross-Krook based condensation simulations where we found that the heat accommodation model plays a key role in the near-field of the nozzle expansion particularly as the degree of condensation increases [R. Kumar, Z. Li, and D. Levin, Phys. Fluids 23, 052001 (2011)]. The heat released by nucleation and condensation and the heat removed by cluster evaporation can be transferred or removed from either the kinetic or translational modes of the carbon dioxide monomers. The molecular dynamics results show that the time required for gas-cluster interactions to establish an equilibrium from an initial state of non-equilibrium is less than the time step used in meso-scale analyses [R. Kumar, Z. Li, and D. Levin, Phys. Fluids 23, 052001 (2011)]. Therefore, the good agreement obtained between the measured cluster and gas number density and gas temperature profiles with the meso-scale modeling using the second energy exchange mechanism is not fortuitous but is physically based. Our MD simulations also showed that a dynamic equilibrium is established by the gas-cluster interactions in which condensation and evaporation processes take place constantly to and from a cluster.  相似文献   

2.
3.
How to understand the response mechanism of ion-selective electrodes   总被引:1,自引:0,他引:1  
Pungor E 《Talanta》1997,44(9):1505-1508
The present study breaks with the earlier mechanism of electrode potential on basis of experimental investigations and theoretical considerations. It rejects that the transport through the membrane produces the electrode potential and definitely proves that the electrode potential is created via surface chemisorption; i.e., the electrode potential is produced by a surface reaction. The reaction centres can be acid-base groups or complex formation groups (e.g., valinomycin or other alkaline earth metal complexing ligands.  相似文献   

4.
The identification of molecular mechanisms underlying enzyme cold adaptation is a hot-topic both for fundamental research and industrial applications. In the present contribution, we review the last decades of structural computational investigations on cold-adapted enzymes in comparison to their warm-adapted counterparts. Comparative sequence and structural studies allow the definition of a multitude of adaptation strategies. Different enzymes carried out diverse mechanisms to adapt to low temperatures, so that a general theory for enzyme cold adaptation cannot be formulated. However, some common features can be traced in dynamic and flexibility properties of these enzymes, as well as in their intra- and inter-molecular interaction networks. Interestingly, the current data suggest that a family-centered point of view is necessary in the comparative analyses of cold- and warm-adapted enzymes. In fact, enzymes belonging to the same family or superfamily, thus sharing at least the three-dimensional fold and common features of the functional sites, have evolved similar structural and dynamic patterns to overcome the detrimental effects of low temperatures.  相似文献   

5.
6.
Data on the kinetics, selectivity, kinetic isotope effect, and the effect of the acidity of the medium on the rate of the reactions of benzene and alkylbenzenes in sulfuric acid (59–78 wt.% H2SO4) solutions of 1-adamantanol at 30 °C indicate that the direct reagents are the adamantyl carbocations (Ad+) that alkylate the arenes. The ortho positions of the benzene ring are not accessible on account of steric hindrances. The rate of attack by the Ad+ cation on the accessible para and meta positions of the ring is controlled by the formation of a σ complex. __________ Translated from Teoreticheskaya i éksperimental’naya Khimiya, Vol. 42, No. 1, pp. 14–18, January–February, 2006.  相似文献   

7.
Bacterial Oxacillinases (OXAs), genetically being extremely diverse and highly versatile in hydrolyzing antibiotics of different classes, holds utmost significant clinical importance. Hence, to analyze functional evolution of this enzyme, plausible changes in drug profile, affinity and binding stability of different subclasses of OXA with their preferred drugs, viz. penicillin, ceftazidime, imipenem/meropenem were investigated. Maximum-Likelihood dendrogram was constructed and based on tree topology, the least and most divergent variants of each clade were selected. Pocket characterization, enzyme structural stability and mutational effect were analyzed in silico. Modes of interaction of selected OXA variants with respective antibiotics were analyzed by Autodock4.0 and LIGPLOT. Comparative mobility profiling and subsequent ΔG° and Km calculations of representative OXA variants revealed that after RSBL evolution, perhaps, two competitive strategies evolved among the OXA variants. Either loops flanking helix5 gets stabilized or it becomes more flexible. Therefore, while OXA variants (e.g. OXA-2, OXA-32, OXA-23, OXA-133, OXA-24, OXA-25, OXA-51 and OXA-75) with highly stabilized loops flanking helix5 exhibited improved binding stability and affinity towards carbapenems, especially meropenem, OXA variants (e.g. OXA-10, OXA-251, OXA-48 and OXA-247) possessing highly flexibile loops flanking helix5 revealed their catalytic proficiency towards ceftazidime. Moreover, LIGPLOT and PROMALS3D jointly identified ten consensuses/conserved residues, viz. P68, A69, F72, K73, W105, V120, W164, L169, K216 and G218 to be critical for drug hydrolysis. Hence, novel inhibitors could be designed to target these sites.  相似文献   

8.
Kumar  Avinash  Rathi  Ekta  Kini  Suvarna G. 《Structural chemistry》2020,31(1):141-153
Structural Chemistry - Repurposing of ‘old’ drugs to treat both common and rare diseases has garnered huge attention of the researchers because of the high attrition rates and...  相似文献   

9.
The structure and dynamic properties of different antisense related duplexes (DNA x RNA, 2'O-Me-DNA x RNA, 2'F-ANA x RNA, C5(Y)-propynyl-DNA x RNA, ANA x RNA, and control duplexes DNA x DNA and RNA x RNA) have been determined by means of long molecular dynamics simulations (covering more than 0.5 micros of fully solvated unrestrained MD simulation). The massive analysis presented here allows us to determine the subtle differences between the different duplexes, which in all cases pertain to the same structural family. This analysis provides information on the molecular determinants that allow RNase H to recognize and degrade some of these duplexes, whereas others with apparently similar conformations are not affected. Subtle structural and deformability features define the key properties used by RNase H to discriminate between duplexes.  相似文献   

10.
Attempts are made to build a bridge between asymmetric catalysis and enzymatic reactions by mechanistic investigations and the development of a catalytic and enantioselective approach to amination of alpha-keto esters by primary amines catalyzed by chiral Lewis acids as a model for transamination enzymes. Different Lewis acids can catalyze the half-transamination of alpha-keto esters using primary amine nitrogen sources such as pyridoxamine and 4-picolylamine. The mechanistic studies of the Lewis-acid catalyzed half-transamination using deuterium-labelled compounds show the incorporation of deuterium atoms in several positions of the alpha-amino acid derivative, indicating that the enol of the alpha-keto ester plays an important role along the reaction path. The catalytic enantioselective reactions are dependent on the pKa-value of the solvent since enantioselectivities were only obtained in solvents with high pKa-values relative to methanol. However, stronger acidic conditions generally gave better yields, but poor enantioselectivities. A series of chiral Lewis acids were screened as catalysts for the enantioselective half-transamination reactions and moderate yields and enantioselectivities of up to 46% ee were obtained.  相似文献   

11.
Hepatitis C virus (HCV) is a major health problem across the world affecting the people of all age groups. It is the main cause of hepatitis and at chronic stage causes liver cirrhosis and hepatocellular carcinoma. Various therapeutics are made against HCV but still there is a need to find out potential therapeutics to combat the virus. The goal of this study is to identify the phytochemicals of Azadirachta indica leaves having antiviral activity against HCV NS3 protease through molecular docking and simulation approach. Results show that the compound 3-Deacetyl-3-cinnamoyl-azadirachtin possesses good binding properties with HCV NS3/4A protease. It can be concluded from this study that Deacetyl-3-cinnamoyl-azadirachtin may serve as a potential inhibitor against NS3/4A protease.  相似文献   

12.
It is interesting that although both lithium bis(trifluoromethane sulfone) imide (LiN(SO2CF3)2, LiTFSI) and acetamide (CH3CONH2) are solid, their mixture is a liquid in an appropriate molar ratio range at room temperature. The liquid formation mechanism of the LiTFSI/acetamide complex has been investigated by FT-IR and FT-Raman spectroscopy. The spectroscopic studies show that the Li+ ions coordinate with the C=O group of acetamide whereas the SO2 group in TFSI- anions interacts with the NH2 group of acetamide via hydrogen bonding. These interactions lead to the breakage of the hydrogen bonds between acetamide molecules and to the dissociation of LiTFSI, resulting in the formation of this molten salt. Furthermore, it has been found that moderate interaction between LiX and RCONH2 (R = -NH2, -CH3 and -CF3) is favorable for forming a LiX/RCONH2 molten salt system with low eutectic temperature and high conductivity based on density functional theory (DFT) calculational and experimental comparison for different R groups in RCONH2 and different lithium salts.  相似文献   

13.
Electrophilic reactive metabolite screening by liquid chromatography/mass spectrometry (LC/MS) is commonly performed during drug discovery and early-stage drug development. Accurate mass spectrometry has excellent utility in this application, but sophisticated data processing strategies are essential to extract useful information. Herein, a unified approach to glutathione (GSH) trapped reactive metabolite screening with high-resolution LC/TOF MS(E) analysis and drug-conjugate-specific in silico data processing was applied to rapid analysis of test compounds without the need for stable- or radio-isotope-labeled trapping agents. Accurate mass defect filtering (MDF) with a C-heteroatom dealkylation algorithm dynamic with mass range was compared to linear MDF and shown to minimize false positive results. MS(E) data-filtering, time-alignment and data mining post-acquisition enabled detection of 53 GSH conjugates overall formed from 5 drugs. Automated comparison of sample and control data in conjunction with the mass defect filter enabled detection of several conjugates that were not evident with mass defect filtering alone. High- and low-energy MS(E) data were time-aligned to generate in silico product ion spectra which were successfully applied to structural elucidation of detected GSH conjugates. Pseudo neutral loss and precursor ion chromatograms derived post-acquisition demonstrated 50.9% potential coverage, at best, of the detected conjugates by any individual precursor or neutral loss scan type. In contrast with commonly applied neutral loss and precursor-based techniques, the unified method has the advantage of applicability across different classes of GSH conjugates. The unified method was also successfully applied to cyanide trapping analysis and has potential for application to alternate trapping agents.  相似文献   

14.
Omp33-36 in A. baumannii, a bacterium causing serious nosocomial infections, is a virulence factor associated with the pathogen metabolic fitness as well as its adherence and invasion to human epithelial cells. This protein is also involved in interaction of the bacteria with host cells by binding to fibronectin. Moreover, Omp33-36 renders cytotoxicity to A. baumannii in addition to inducing apoptosis and modulation of autophagy. In the present study, an integrated strategy is launched to pierce into the 3D structure of Omp33-36 protein. The signal peptide within the sequence was determined, then, topology as well as secondary and tertiary structures of the protein were predicted. The mature protein assigned as a 14-stranded barrel in which residues 1–19 is removed as signal peptide. The obtained 3D models were evaluated in terms of quality; and then, served as queries to find similar protein structures. The hits were analyzed regarding topology among which 14-stranded were considered. The most qualified model was refined and then its sequence aligned to its counterpart similar structure protein (CymA from Klebsiella oxytoca). The determined structure of Omp33-36 could justify its porin function and carbapenem-resistance associated with the loss of this protein.  相似文献   

15.
BackgroundAllergy has become a key cause of morbidity worldwide. Although many legumes (plants in the Fabaceae family) are healthy foods, they may have a number of allergenic proteins. A number of allergens have been identified and characterized in Fabaceae family, such as soybean and peanut, on the basis of biochemical and molecular biological approaches. However, our understanding of the allergens from chickpea (Cicer arietinum L.), belonging to this family, is very limited.ObjectiveIn this study, we aimed to identify putative and cross-reactive allergens from Chickpea (C. arietinum) by means of in silico analysis of the chickpea protein sequences and allergens sequences from Fabaceae family.MethodsWe retrieved known allergen sequences in Fabaceae family from the IUIS Allergen Nomenclature Database. We performed a protein BLAST (BLASTp) on these sequences to retrieve the similar sequences from chickpea. We further analyzed the retrieved chickpea sequences using a combination of in silico tools, to assess them for their allergenicity potential. Following this, we built structure models using FUGUE: Sequence-structure homology; these models generated by the recognition tool were viewed in Swiss-PDB viewer.ResultsThrough this in silico approach, we identified seven novel putative allergens from chickpea proteome sequences on the basis of similarity of sequence, structure and physicochemical properties with the known reported legume allergens. Four out of seven putative allergens may also show cross reactivity with reported allergens since potential allergens had common sequence and structural features with the reported allergens.ConclusionThe in silico proteomic identification of the allergen proteins in chickpea provides a basis for future research on developing hypoallergenic foods containing chickpea. Such bioinformatics approaches, combined with experimental methodology, will help delineate an efficient and comprehensive approach to assess allergenicity and pave the way for a better understanding of the biological and medical basis of the same.  相似文献   

16.
A variety of molecular gradients of alkanethiols with the structure HS-(CH(2))(m)-X (m = 15; X = COOH, CH(2)NH(2), or CH(3)) and oligo(ethylene glycol)-terminated alkanethiols with the structures HS-(CH(2))(15)-CO-NH-Eg(n) (n = 2, 4, or 6), HS-(CH(2))(15)-CO-NH-Eg(2)-(CH(2))(2)-NH-CO-(CH(2))(4)-biotin, and HS-(CH(2))(15)-CO-NH-Eg(6)-CH(2)-COOH were prepared on polycrystalline gold films. These gradients were designed to serve as model surfaces for fundamental studies of protein adsorption and immobilization phenomena. Ellipsometry, infrared spectroscopy, and X-ray photoelectron spectroscopy, operating in scanning mode, were used to monitor the layer composition, gradient profiles, tail group conformation, and overall structural quality of the gradient assemblies. The gradient profiles were found to be 4-10 mm wide, and they increased in width with increasing difference in molecular complexity between the thiols used to form the gradient. The oligo(ethylene glycol) thiols are particularly interesting because they can be used to prepare so-called conformational gradients, that is, gradients that display a variation in oligo(ethylene glycol) chain conformation from all trans on the extreme Eg(2,4) sides, via an amorphous-like phase in the mixing regimes, to helical at the extreme Eg(6) sides. We demonstrate herein a series of experiments where the above gradients are used to evaluate nonspecific binding of the plasma protein fibrinogen, and in agreement with previous studies, the highest amounts of nonspecifically bound fibrinogen were observed on all-trans monolayers, that is, on the extreme Eg(2,4) sides. Moreover, gradients between Eg(2) and a biotinylated analogue have been prepared to optimize the conditions for the immobilization of streptavidin. Ellipsometry and infrared spectroscopy reveal high levels of immobilization over a fairly broad range of compositions in the gradient regime, with a maximum between 50 and 60% of the biotinylated analogue in the monolayer. A pI gradient composed of (NH(3)(+)/COO(-))-terminated thiols was also prepared and evaluated with respect to its ability to separate differently charged proteins, pepsin, and lysozyme, on a solid surface.  相似文献   

17.
18.
Alzheimer’s disease is an ultimately fatal neurodegenerative disease, and BACE-1 has become an attractive validated target for its therapy, with more than a hundred crystal structures deposited in the PDB. In the present study, we present a new methodology that integrates ligand-based methods with structural information derived from the receptor. 128 BACE-1 inhibitors recently disclosed by GlaxoSmithKline R&D were selected specifically because the crystal structures of 9 of these compounds complexed to BACE-1, as well as five closely related analogs, have been made available. A new fragment-guided approach was designed to incorporate this wealth of structural information into a CoMFA study, and the methodology was systematically compared to other popular approaches, such as docking, for generating a molecular alignment. The influence of the partial charges calculation method was also analyzed. Several consistent and predictive models are reported, including one with r 2 = 0.88, q 2 = 0.69 and r pred2 = 0.72. The models obtained with the new methodology performed consistently better than those obtained by other methodologies, particularly in terms of external predictive power. The visual analyses of the contour maps in the context of the enzyme drew attention to a number of possible opportunities for the development of analogs with improved potency. These results suggest that 3D-QSAR studies may benefit from the additional structural information added by the presented methodology.  相似文献   

19.
20.
The prevalence of diabetes mellitus has been incremented in the current century and the need for novel therapeutic compounds to treat this disease has been significantly increased. One of the most promising approaches is to inhibit intestinal alpha glucosidases. Based on our previous studies, four pyrimidine-fused heterocycles (PFH) were selected as they revealed satisfactory inhibitory action against mammalian α-glucosidase. The interaction of these compounds with both active domains of human maltase-glucoamylase (MGAM) and their effect on human Caco-2 cell line were investigated. The docking assessments suggested that binding properties of these ligands were almost similar to that of acarbose by establishing hydrogen bonds especially with Tyr1251 and Arg526 in both C-terminal and N-terminal MGAM, respectively. Also, these compounds indicated a stronger affinity for C-terminal of MGAM. L2 and L4 made tightly complexes with both terminals of MGAM which in turn revealed the importance of introducing pyrimidine scaffold and its hinge compartment. The results of molecular dynamics simulation analyses confirmed the docking data and showed deep penetration of L2 and L4 into the active site of MGAM. Based on cell cytotoxicity assessments, no significant cell death induction was observed. Hence, these functional MGAM inhibitors might be considered as new potential therapeutic compounds in treatment of diabetes and its complications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号