首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The effect of polymer–salt addition in the activated carbon electrode for electric double-layer capacitor (EDLC) has been investigated. A series of composite thin film electrode consisting of activated carbon, carbon black, polytetrafluoroethylene and polymer–salt complex (polyethyleneoxide–LiClO4) with an appropriate weight ratio were prepared and examined their performance for EDLCs using 1 mol L−1 LiClO4 in ethylene carbonate:diethylcarbonate electrolyte solution. The electrochemical capacitance performances of these electrodes with different compositions were characterized by cyclic voltammetry, galvanostatic charge–discharge cycling, and AC impedance measurements. By comparison, the best results were obtained with a composite electrode rich in polymer–salt additive (132 F g−1 at 100 mA g−1 of galvanostatic experiment). In general, the polymer–salt-containing electrode had shown improved performance over activated carbon electrodes without polymer–salt at high current density.  相似文献   

2.
A screen-printed carbon working electrode within a commercially available screen-printed three-electrode assembly was modified by using a composite of multiwalled carbon nanotubes (MWCNT) dispersed in polyethylenimine (PEI) followed by covering with the calf thymus dsDNA layer. Several electrochemical methods were used to characterize the biosensor and to evaluate damage to the surface-attached DNA: square wave voltammetry of the [Ru(bpy)3]2+ redox indicator and mediator of the guanine moiety oxidation, cyclic voltammetry and electrochemical impedance spectroscopy in the presence of the [Fe(CN)6]3−/4− indicator in solution. Due to high electroconductivity and large surface area of MWCNT and positive charge of PEI, the MWCNT–PEI composite is an advantageous platform for the DNA immobilization by the polyelectrolyte complexation and its voltammetric and impedimetric detection. In this respect, the MWCNT–PEI interface exhibited better properties than the MWCNT–chitosan one reported from our laboratory previously. A deep DNA layer damage at incubation of the biosensor in quinazoline solution was found, which depends on the quinazoline concentration and incubation time. Figure Impedance spectra for the modified electrodes. Conditions: 1 mM [Fe(CN)6]3–/4– in 0.1 M PBS (pH = 7.0), potential amplitude 10 m V, frequency range 12–1×104 Hz. Dedicated to Professor Jan Garaj on the occasion of his 75th birthday  相似文献   

3.
Three platinum(II) complexes were synthesized and studied to characterize their ability as an anion carrier in a PVC membrane electrode. The polymeric membrane electrodes (PME) and also coated glassy carbon electrodes (CGCE) prepared with one of these complexes showed excellent response characteristics to perchlorate ions. The electrodes exhibited Nernstian responses to ClO4 ions over a wide concentration range from 1.5 × 10−6 to 2.7 × 10−1M for PME and 5.0 × 10−7 to 1.9 × 10−1M for CGCE with low detection limits (9.0 × 10−7M for PME and 4.0 × 10−7M for CGCE). The electrodes possess fast response time, satisfactory reproducibility, appropriate lifetime and, most importantly, good selectivity toward ClO4 relative to a variety of other common anions. The potentiometric response of the electrodes is independent of the pH of the test solution in the pH range 2.0–9.0. The proposed sensors were used in potentiometric determination of perchlorate ions in mineral water and urine samples. Correspondence: Ahmad Soleymanpour, Department of Chemistry, Damghan Basic Science University, Damghan, Iran.  相似文献   

4.
A new type of carbon paste electrode (CPE) was made using ketotifen fumarate (C23H23NO5S; an antiasthmatic/antianaphylactic drug) and hexacyanoferrate. This electrode was constructed using an acidic solution of ketotifen fumarate and potassium hexacyanoferrate. For this purpose, ketotifen fumarate was dissolved in acidic solution (pH 1) and hexacyanoferrate was added by agitation, resulting in ketotifen–hexacyanoferrate (Ket–HCF) precipitate. The obtained precipitate was separated and introduced into carbon paste. The electrochemical behavior of Ket–HCF CPE was studied by cyclic voltammetry. A modified electrode shows one pair of peaks with surface-confined characteristics, with a 0.1-M phosphate buffer as supporting electrolyte. The effects of pH, alkali metal cations, and anions of supporting electrolytes on the electrochemical characteristics of modified electrodes were studied. The diffusion coefficients of hydrated K+ in film (D), the transfer coefficient (α), and the transfer rate constant for electrons (k s) were determined.  相似文献   

5.
A Pt wire coated with a bentonite–carbon composite in a poly(vinyl chloride) membrane was used for detection of lead. The sensor has a Nernstian slope of 29.42±0.50 mV per decade over a wide range of concentration, 1.0×10−7 to 1.0×10−3 mol L−1 Pb(NO3)2. The detection limit is 5.0×10−8 mol L−1 Pb(NO3)2 and the electrode is applicable in the pH range 3.0–6.7. It has a response time of approximately 10 s and can be used at least for three months. The electrode has good selectivity relative to nineteen other metal ions. The practical analytical utility of the electrode is demonstrated by measurement of Pb(II) in industrial waste and river water samples.  相似文献   

6.
A new modified carbon paste electrode based on a recently synthesized mercury (II) complex of a pyridine containing proton transfer compound as a suitable carrier for Br ion is described. The electrode has a linear dynamic range between 3.00×10−2 and 1.0×10−5 M with a near-Nernastian slope of 61.0±0.9 mV per decade and a detection limit of 4.0×10−6 M (0.32 ppm). The potentiometric response is independent of the pH of the solution in the pH range 4.0–8.3. The electrode possesses the advantages of low resistance, fast response and good over a variety of other anions. It was applied as an indicator electrode in potentiometric titration of bromide ions and for the recovery of Br from tap water.  相似文献   

7.
Electrochemically active hybrid coatings based on cationic films, didodecyldimethylammonium bromide (DDAB), and poly(diallyldimethylammonium chloride) (PDDAC) are prepared on electrode surface by cycling the film-covered electrode repetitively in a pH 6.5 solution containing Fe(CN)6 3− and Ru(CN)6 4− anions. Modified electrodes exhibited stable and reversible voltammetric responses corresponding to characteristics of Fe(CN)6 3−/4− and Ru(CN)6 4−/3− redox couples. The cyclic voltammetric features of hybrid coatings resemble that of electron transfer process of surface-confined redox couple. Electrochemical quartz crystal microbalance results show that more amounts of electroactive anionic complexes partitioned into DDAB coating than those doped into PDDAC coating from the same doping solution. Peak potentials of hybrid film-bound redox couples showed a negative shift compared to those at bare electrode and this shift was more pronounced in the case of DDAB. Finally, the advantages of hybrid coatings in electrocatalysis are demonstrated with sulfur oxoanions.  相似文献   

8.
Molecular wires containing copper(II) (CuMW), in the form of the coordination polymer (Cu(II)4(bpp)4(maa)8(H2O)2).2H2O (bpp=1,3-bis(4-pyridyl)propane, maa=2-methylacrylic acid), and multiwalled carbon nanotubes (CNT) have been combined to prepare a paste electrode (CuMW/CNT/PE). The voltammetric response of the CuMW/CNT/PE to metformin (MET) was significantly greater than that of electrodes prepared from other materials, because of both the surface effect of CuMW and CNT and coordination of MET with the Cu(II) ion in the CuMW. A novel voltammetric method for determination of MET is proposed. In pH 7.2 Britton–Robinson buffer, using single sweep voltammetry, the second-order derivative peak current for oxidation of MET at 0.97 V (relative to SCE) increased linearly with MET concentration in the range 9.0 × 10−7–5.0 × 10−5 mol L−1 and the detection limit was 6.5 × 10−7 mol L−1. Figure When a combination of molecular wires containing copper(II) (CuMW) and multiwalled carbon nanotubes (CNT) was used to prepare a paste electrode (CuMW/CNT/PE) the voltammetric response to metformin (curve c) was significantly higher than that at a carbon/PE (curve a) or a CNT/PE (curve b), because of the amplification effect of CNT and CuMW. A novel voltammetric method is proposed for determination of MET  相似文献   

9.
Highly selective poly(vinyl chloride) (PVC) membrane electrode based on N-salicylidene-benzylamineato copper(II) complexes [Cu(SBA)2] as new carriers towards thiocyanate-selective electrode was reported. The influence of membrane composition, pH and possible interfering anions were investigated on the response properties of the electrode. The resulting electrode exhibits anti-Hofmeister selectivity sequence: SCN > ClO4 > Sal > I > Br > NO3 > NO2 > SO32− > H2PO4 > Cl > SO42−, and a near-Nernstian potential linear range for thiocyanate from 1.0 × 10−1 to 9.0 × 10−7 M with a detection limit of 7.0 10−7 M and a slope of , over a wide pH range of 3.0–9.0 in phosphate buffer solution at 20°C. The proposed electrode has a fast response time of about 5–10 s and can be used for at least 3 months without any considerable divergence in potential. The electrode was successfully applied to the determination of thiocyanate in waste water and human urine and saliva samples. Published in Russian in Elektrokhimiya, 2008, Vol. 44, No. 3, pp. 293–299. The text was submitted by the authors in English.  相似文献   

10.
A novel nanocrystalline TiO2 (nano-TiO2) and Nafion composite film modified glassy carbon electrode has been developed for the determination of nitric oxide (NO) radical in an aqueous solution. This modified electrode can be employed as a NO sensor with a low detection limit, fast response, high sensitivity and selectivity. Two apparent anodic peaks were observed at 0.67 and 0.95 V at the nano-TiO2 modified glassy carbon electrode by differential pulse voltammetry (DPV). After further modification with a thin film of Nafion, which was capable of preventing some anionic interference such as nitrite and ascorbic acid, only one peak appeared and the peak current enhanced greatly. The chronocoulometric experimental results showed NO was oxidized by one-electron transfer reaction at the composite film modified electrode. The amperometric responses increased linearly with the concentrations of NO ranging from 3.6×10−7 mol/L to 5.4×10−5 mol/L. The detection limit was estimated to be 5.4×10−8 mol/L. In this sensor system, the modification film provides complete selectivity for NO over nitrite anions (NO2).  相似文献   

11.
A hydrophilic carbon nanoparticle–sol-gel electrode with good electrical conductivity within the sol-gel matrix is prepared. Sulfonated carbon nanoparticles with high hydrophilicity and of 10–20 nm diameter (Emperor 2000) are co-deposited onto tin-doped indium oxide substrates employing a sol-gel technique. The resulting carbon nanoparticle-sol-gel composite electrodes are characterized as a function of composition and salt (KCl) additive. Scanning electron microscopy and voltammetry in the absence and in the presence of a solution redox system suggest that the composite electrode films can be made electrically conducting and highly porous to promote electron transport and transfer. The effect of the presence of hydrophilic carbon nanoparticles is explored for the following processes: (1) double layer charging, (2) diffusion and adsorption of the electrochemically reversible solution redox system 1,1′-ferrocenedimethanol, (3) electron transfer to the electrochemically irreversible redox system hydrogen peroxide, and (4) electron transfer to the redox liquid tert-butylferrocene deposited into the porous composite electrode film. The extended electrochemically active hydrophilic surface area is beneficial in particular for surface sensitive processes (1) and (3), and it provides an extended solid|organic liquid|aqueous solution boundary for reaction (4). The carbon nanoparticle–sol-gel composite electrodes are optimized to provide good electrical conductivity and to remain stable during electrochemical investigation.  相似文献   

12.
Both nitrazepam and flunitrazepam have been determined by high-performance liquid chromatography dual electrode detection (LC-DED) in the reductive–reductive mode, using a carbon fibre veil electrode (CFVE) in conjugation with a glassy carbon electrode. Initial studies were made to optimise the chromatographic conditions. These were found to be 45% acetonitrile-55% acetate buffer (50 mM, pH 4.1) at a flow rate of 1.0 ml/min, employing a Hypersil C18, 5 μm, 250 mm × 4.6 mm column. Cyclic voltammetric studies performed to ascertain the redox behaviour of nitrazepam and flunitrazepam at a CFVE in the optimised mobile phase. Studies showed that similar voltammetric behaviour was obtained to that report at Hg or glassy carbon based electrodes. Further studies were then carried out to identify the optimum conditions required for the LC-DED determination of nitrazepam and flunitrazepam in beverage samples. Hydrodynamic voltammetry was used to optimise the applied potential at the generator and detector cells; these were identified to be −2.40 and −0.25 V, respectively. A linear range of 2.0 to 100 μg ml−1, with a detection limit of 20 ng ml−1 was obtained. A convenient and rapid method for the determination of both nitrazepam and flunitrazepam in beverage sample was developed. Following a simple sample extraction procedure, extracts were examined using the optimised LC-DED procedure. An average percentage recovery of 95.5% (%CV = 4.5%) for nitrazepam and 78.0% (%CV = 8.8%) was achieved for a sample of “Pepsi Max” spiked at 1.0 μg ml−1 nitrazepam, 1.47 μg ml−1 flunitrazepam. Presented at the 4th Annual Meeting of the Great Western Electrochemistry Group, 8th June 2005, University of the West of England, Bristol, UK.  相似文献   

13.
The voltammetric behavior of folic acid (FA) at a multi-walled carbon nanotube (MWNT) modified gold electrode has been investigated by cyclic voltammetry, chronoamperometry and chronocoulometry. The modified electrode exhibits a good promoting effect on the electrochemical reaction of FA. FA can generate a well-defined anodic peak at around 0.83 V (vs. SCE) in 0.1 M H3PO4–NaH2PO4 buffer solution of pH 2.5. The peak results from a 2-electron transfer of FA, and the standard potential of FA is estimated to be 0.79 V (vs. SCE). The parameters affecting the response of FA, such as solution pH, accumulation time, accumulation potential, and amount of MWNTs are optimized for the determination of FA. Under the optimum conditions, the peak current changes linearly with FA concentration in the range from 2.0 × 10−8 M to 1.0 × 10−6 M. This method has been applied to the determination of FA in drug tablets, and the recovery is 93.9–96.9%. In addition, the influence of some coexistent species is examined. When a Nafion layer is introduced on the gold electrode before deposition of MWNTs, the resulting composite electrode can give better response to FA. At the same time, the interference by some foreign species is suppressed to some extent.  相似文献   

14.
Functionalized polypyrrole films were prepared by incorporation of Fe(CN)6 3− as doping anion during the electropolymerization of pyrrole at a glassy carbon electrode from aqueous solution. The electrochemical behavior of the Fe(CN)6 3−/Fe(CN)6 4− redox couple in polypyrrole was studied by cyclic voltammetry. An obvious surface redox reaction was observed and dependence of this reaction on the solution pH was illustrated. The electrocatalytic ability of polypyrrole film with ferrocyanide incorporated was demonstrated by oxidation of ascorbic acid at the optimized pH of 4 in a glycine buffer. The catalytic effect for mediated oxidation of ascorbic acid was 300 mV and the bimolecular rate constant determined for surface coverage of 4.5 × 10−8 M cm−2 using rotating disk electrode voltammetry was 86 M−1 s−1. Furthermore, the catalytic oxidation current was linearly dependent on ascorbic acid concentration in the range 5 × 10−4–1.6 × 10−2 M with a correlation coefficient of 0.996. The plot of i p versus v 1/2 confirms the diffusion nature of the peak current i p. Received: 12 April 1999 / Accepted: 25 May 1999  相似文献   

15.
The mixed oxide phosphate (≡SiO)2Ti(O3POH)2 having a specific surface area of SBET= 595 m2 g−1 and an average pore volume of 0.43 mL g−1 was prepared by the sol-gel processing method. The material showed the following characteristics: Ti=11.6 wt% and P=10.5 wt%; ion exchange capacity of 0.60 mmol g−1. Meldola's Blue (MLB) dye was adsorbed, by an ion exchange reaction, from an aqueous solution in a quantity of 0.62 mmol g−1. The dye was strongly retained and was not easily leached from the matrix even in presence of 0.5 M electrolyte solution. Changing the solution pH between 2.5 and 7.0, the midpoint potential of the dye-adsorbed (≡SiO)2 Ti(O3POMLB)2 matrix carbon paste electrode remained practically constant, i.e. about 20 mV vs. SCE. This is not the usual behaviour of MLB since its midpoint potential changes considerably in solution phase as the pH is changed. The modified electrode has proved to be stable and electrocatalytically active for hydrazine oxidation at pH 6. Received: 22 June 1999 / Accepted: 7 September 1999  相似文献   

16.
Modification of an aluminum electrode by means of a thin film of cobalt hexacyanoferrate (CoHCF) using electroless and electrochemical procedures is described. The modification conditions of the aluminum surface, including the electroless deposition of metallic cobalt on the electrode surface from CoCl2+NaF solution and the chemical derivatization of the deposited cobalt to give a CoHCF film in 0.25 M KCl+0.25 M K3[Fe(CN)6] solution, have been determined. The modified Al electrodes prepared under optimum conditions show one or two well-defined redox couples in phosphate buffer solutions of pH 7.2, depending on the preparation procedure, due to the [CoIIFeIII/II(CN)6]–/2– system. The effect of pH, alkali metal cations, and anions of the supporting electrolyte on the electrochemical characteristics of the modified electrode were studied. Diffusion coefficients of hydrated Na+ in the film, the transfer coefficient, and the transfer rate constant for electrons were determined. The stability of the modified electrodes under various experimental conditions was studied and their high stability in the sodium phosphate buffer solutions was confirmed. Enhanced stability was observed when the modified electrode was scanned in fresh solutions of RuCl3 between 0 and 1 V for at least 20 cycles, due to the formation of mixed hexacyanoferrates of cobalt and ruthenium. Electronic Publication  相似文献   

17.
In this paper, a new highly sensitive potentiometric pH electrode is proposed based on the solid-state PbO2 film electrodeposited on carbon ceramic electrode (CCE). Two different crystal structures of PbO2, α and β were examined and the similar results were obtained. Moreover, the experimental results obtained for the proposed pH sensor and a conventional glass pH electrode were in good agreement. The electromotive force (emf) signal between the pH-sensitive PbO2-coated CCE and SCE reference electrode was linear over the pH range of 1.5–12.5. Near-Nernstian slopes of −64.82 and −57.85 mV/pH unit were obtained for α- and β-PbO2 electrodes, respectively. The interferences of some mono-valence and multi-valence ions on potentiometric response of the sensor were studied. The proposed pH sensor displayed high ion selectivity with respect to K+, Na+, Ca2+, and Li+, with log values around −12 and has a working lifetime of about 30 days. Key parameters important for the pH sensor performance, including kind of PbO2 film, selectivity, response time, stability, and reproducibility, have been characterized. The proposed electrode showed a good efficiency for direct pH-metry after calibration and pH-metric titrations without calibration step. The response time was about 1 s in acidic medium and less than 30 s in alkaline solutions. The pH values of complex matrix samples such as fruit juices measured by the proposed sensor and a conventional glass pH electrode were in good agreement.  相似文献   

18.
Ibuprofen membrane electrodes based on different plasticizers: diisobutyl phthalate (DIBP), o-nitrophenyloctyl ether (o-NPOE), dioctyl sebacate (DOS) and tetraoctylammonium 2-(4-isobutylphenyl)propionate were prepared. All electrodes show: a near Nernstian slope of characteristic (58.3–60.9 mV decade−1) in the measurement range (10−4–10−1 mol L−1), limit of detection (5.0×10−5 mol L−1), really long lifetime (12 months), dependence of the electrode potential on pH (5.5–9.0), reproducibility of potential (0.6–1.2 mV) and selectivity coefficients in relation to some organic and inorganic anions. The electrodes were applied for the determination of ibuprofen in tablets by the calibration curve method and the standard addition method.   相似文献   

19.
Nickel foam and five nickel foam-based composite electrodes were prepared for being used as anode materials for the electrooxidation of methanol in KOH solution containing 0.1 and 1.0 M of methanol. The layered electrodes composed of nickel foam, platinum nanoparticles, polyaniline (PANI) and/or porous carbon (C) prepared in various assemblies. As shown by SEM analysis, depending on the preparation conditions, the electrodes of different morphologies were obtained. Using the cyclic voltammetry method, the oxidation of methanol on nickel foam electrode was observed in the potential range 0.4 V ↔ 0.7 V, where the Ni(OH)2/NiOOH transformation occurred. The presence of Pt particles in electrode gave rise to the increase in electrocatalytic activity in this potential range. For electrodes containing dispersed platinum catalyst (Ni/Pt, Ni/PANI/Pt and Ni/C/Pt), the oxidation of methanol was noted also in the potential range −0.5 V ↔ 0.1 V. The electrocatalytic activities of the examined electrodes toward methanol oxidation at low potentials were in order Ni/Pt > Ni/C/Pt > Ni/PANI/Pt, whereas at high potentials in order Ni/PANI/Pt > Ni/Pt> Ni/C/Pt > Ni. Among the examined electrodes, the most resistant to cyclic poisoning appeared to be the Ni/C/Pt electrode. Presented at the 4Th Baltic Conference on Electrochemistry, Greifswald, March 13–16, 2005  相似文献   

20.
Nickel and nickel–copper alloy modified glassy carbon electrodes (GC/Ni and GC/NiCu) prepared by galvanostatic deposition were examined for their redox processes and electro-catalytic activities towards the oxidation of glucose in alkaline solutions. The methods of cyclic voltammetry (CV) and chronoamperometry (CA) were employed. The cyclic voltammogram of NiCu alloy demonstrates the formation of β/β crystallographic forms of the nickel oxyhydroxide under prolonged repetitive potential cycling in alkaline solution. It is also observed that the overpotential for O2 evolution increases for NiCu alloy modified electrode. In CV studies, NiCu alloy modified electrode yields significantly higher activity for glucose oxidation compared to Ni. The oxidation of glucose was concluded to be catalyzed through mediated electron transfer across the nickel hydroxide layer comprising of nickel ions of various valence states. The anodic peak currents show linear dependency with the square root of scan rate. This behavior is the characteristic of a diffusion-controlled process. Under the CA regime, the reaction followed a Cottrellian behavior, and the diffusion coefficient of glucose was found to be 1 × 10−5 cm2 s−1, in agreement with diffusion coefficient obtained in CV studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号