首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Orange crystals of Cs(4)Th(4)P(4)Se(26) were grown from the reaction of (232)Th and P in a Cs(2)Se(3)/Se molten salt flux at 750 degrees C. Cs(4)Th(4)P(4)Se(26) crystallizes in the orthorhombic space group Pbca with the unit cell parameters: a = 12.0130(6), b = 14.5747(7), c = 27.134(1) A; Z = 8. The compound exhibits a three-dimensional structure, consisting of dimeric [Th(2)Se(13)] polyhedral units. The two crystallographically independent, nine-coordinate, bicapped trigonal prismatic thorium atoms share a triangular face to form the dimer, and each dimer edge-shares two selenium atoms with two other dimers to form kinked chains along the [010] direction. While this structure shares features of the previously reported Rb(4)U(4)P(4)Se(26), including phosphorus in the 5+ oxidation state, careful inspection of the structure reveals that the selenophosphate anion that knits the structure together in three directions in both compounds is a unique (P(2)Se(9))(6-) anion. The formula may be described best as [Cs(2)Th(2)(P(2)Se(9))(Se(2))(2)](2). The (P(2)Se(9))(6-) anion features a nearly linear Se-Se-Se backbone with an angle of 171 degrees and Se-Se distances that are approximately 0.2-0.3 A longer than the typical single Se-Se bond. Magnetic studies confirm that this phase contains Th(IV). Raman data for this compound is reported, and structural comparisons will be drawn to its uranium analogue, Rb(4)U(4)P(4)Se(26).  相似文献   

2.
Pocha R  Johrendt D 《Inorganic chemistry》2004,43(21):6830-6837
The new ternary selenostannates Sr(4)Sn(2)Se(9) and Sr(4)Sn(2)Se(10) have been synthesized by heating the elements at 1023 K in an argon atmosphere. Their structures were determined by single-crystal X-ray methods. Sr(4)Sn(2)Se(9) crystallizes in a new structure type (Pbam, a = 12.042(2) A, b = 16.252(3) A, c = 8.686(2) A, Z = 4) with Sn(2)Se(6)(4-), SnSe(4)(4-), and Se(2)(2-) subunits. Sr(4)Sn(2)Se(10) (P2(1)2(1)2, a = 12.028(2) A, b = 16.541(3) A, c = 8.611(2) A, Z = 4) has a similar structure with Se(3)(2-) triangles instead of Se(2)(2-) dumbbells. Strontium is 8-fold-coordinated by selenium in both cases. The opening angles between tin and the terminal selenium atoms in the Sn(2)Se(6) subunits are close to 160 degrees , which is nearer a typical Sn(2+) coordination geometry than classical SnSe(4) tetrahedra. This result suggests the tin oxidation state in the Sn(2)Se(6) units to be lower than the expected Sn(4+). This question is examined by self-consistent LMTO and LAPW band structure calculations expanded by the Bader analysis of the charge density to assign reliable atomic charges.  相似文献   

3.
Single crystals of MnThTe3 (1) and MgThTe3 (2) grow as small black plates from the stoichiometric reaction of the elements, the former at 1,000 degrees C and the latter at 900 degrees C with the aid of a Sn flux. Both compounds crystallize in the space group Cmcm of the orthorhombic system with four formula units in cells of dimensions a = 4.2783(6) A, b = 13.8618(11) A, and c = 9.9568(15) A for 1 and a = 4.2854(6) A, b = 14.042(2) A, and c = 9.9450(14) A for 2 at T = 153(2) K. KCuThSe3 (3) forms as red blocks from a stoichiometric mixture of K2Se, Cu, Th, and Se at 800 degrees C, and CsCuThSe3 (4) forms as yellow blocks from a stoichiometric mixture of Cs2Se3, Cu, Th, and Se at 850 degrees C. Compounds 3 and 4 also crystallize in the space group Cmcm of the orthorhombic system with four formula units in cells of dimensions a = 4.1832(8) A, b = 14.335(3) A, and c = 10.859(2) A for 3 and a = 4.2105(7) A, b = 15.715(3) A, and c = 10.897(2) A for 4 at 153(2) K. Compounds 1 and 2 are isostructural with each other as well as with several uranium analogues and comprise pseudolayered structures with slabs of corner-shared MTe6 octahedra alternating with slabs of cap- and edge-shared ThTe8 bicapped trigonal prisms. The slabs are bonded together through the sharing of edges and vertices of the various polyhedra to form three-dimensional structures. Compounds 3 and 4 are two-dimensional layered structures that are closely related to 1 and 2. In 3 and 4, ThSe6 octahedra form the same slabs as MTe6 in 1 and 2 and Cu atoms occupy the tetrahedral holes in the layers. Alkali metal cations occupy bicapped trigonal prismatic sites between the layers. Neither structure type has short Q-Q interactions, and therefore the oxidation states of all atoms are straightforwardly assigned on the assumption of Th4+. Magnetic susceptibility measurements on compound 1 show a ferromagnetic transition at 70 K and a magnetic moment of 5.9(2) muB per Mn ion, indicating low-spin Mn2+.  相似文献   

4.
PdBr2Se6 and PdCl2Se8 are two new compounds with cyclic Se6 coordinated to PdBr2 molecules and one-dimensional helical Sex chains coordinated to PdCl2 molecules. PdBr2Se6 is a black solid with a crystal structure similar, but not equal, to PdCl2Se6. It crystallizes in the space group P1 with the lattice constants a = 4.3946(8) A, b = 7.605(1) A, c = 7.992(2) A, alpha = 66.15(2) degrees , beta = 86.44(2) degrees , gamma = 80.90(2) degrees , and Z = 1 and can be handled in air like the deep red PdCl2Se8 which crystallizes in the orthorhombic space group Pbca with the lattice constants a = 9.609(2) A, b = 8.958(2) A, c = 13.799(3) A, and Z = 4. In PdBr2Se6, two cyclic Se6 molecules (chair conformation) are directly coordinated to Pd atoms, forming Pd(Se6)2Br2 groups. These are connected to one-dimensional chains via trans-standing Se atoms. In PdCl2Se8, the selenium substructure consists of helical chains with every fifth Se atom directly coordinated to the Pd atom of a PdCl2 group. Each PdCl2 group on the other hand connects two neighboring Sex helices. The type of Sex helix found for this compound is unique and differs from all other ones reported up to now including elemental alpha-Se. A reproducible twinning observed for PdBr2Se6 crystals in the course of the X-ray single-crystal investigations is checked by transmission electron microscopy in connection with details of the atomic arrangement. The Raman spectra of PdBr2Se6 and PdCl2Se8 are compared to Raman data of elemental Se modifications and give significant support for the Se6 and helical Sex to be neutral molecules. A discussion of the results of thermal analyses gives clear evidence that cyclic Se6 and helical Sex are considerably stabilized by bonding to the PdX2 molecules because the melting temperatures of the composite materials are significantly higher than the ones of the respective elemental modifications.  相似文献   

5.
Wang C  Hughbanks T 《Inorganic chemistry》1996,35(24):6987-6994
The synthesis of the group IV ternary chalcogenides Zr(6)MTe(2) (M = Mn, Fe, Co, Ni, Ru, Pt) and Zr(6)Fe(1)(-)(x)()Q(2+)(x)() (Q = S, Se) is reported, as are the single-crystal structures of Zr(6)FeTe(2), Zr(6)Fe(0.6)Se(2.4), and Zr(6)Fe(0.57)S(2.43). The structure of Zr(6)FeTe(2) was refined in the hexagonal space group P&sixmacr;2m (No. 189, Z = 1) with lattice parameters a = 7.7515(5) ? and c = 3.6262(6) ?, and the structures of Zr(6)Fe(0.6)Se(2.4) and Zr(6)Fe(0.57)S(2.43) were refined in the orthorhombic space group Pnnm (No. 58, Z = 4) with lattice parameters a = 12.737(2) ?, b = 15.780(2) ?, and c = 3.5809(6) ? and a = 12.519(4) ?, b = 15.436(2) ?, and c = 3.4966(6) ?, respectively. The cell parameters of Mn-, Co-, Ni-, Ru-, and Pt-containing tellurides were also determined. The Zr(6)ZTe(2) compounds are isostructural with Zr(6)CoAl(2), while Zr(6)Fe(1)(-)(x)()Q(2+)(x)() (Q = S, Se) were found to adopt a variant of the Ta(2)P-type structure. Chains of condensed M-centered, tetrakaidecahedra of zirconium constitute the basic structural unit in all these compounds. The modes of cross-linking that give rise to the Zr(6)FeTe(2) and Zr(6)Fe(1)(-)(x)()Q(2+)(x)() structures, differences among the title compounds, and the influence of chalcogen size differences are discussed. The stoichiometric nature of Zr(6)FeTe(2) and its contrast with sulfur and selenium congeners apparently result from a Te-Fe size mismatch. The importance of stabilization of both Zr(6)FeSe(2) and Zr(6)FeTe(2) compounds by polar intermetallic Zr-Fe bonding is underscored by a bonding analysis derived from electronic band structure calculations.  相似文献   

6.
The new selenogermanates Sr2Ge2Se5 and Ba2Ge2Se5 were synthesized by heating stoichiometric mixtures of binary selenides and the corresponding elements to 750 degrees C. The crystal structures were determined by single-crystal X-ray methods. Both compounds adopt previously unknown structure types. Sr2Ge2Se5 (P2(1)/n, a = 8.445(2) A, b = 12.302 A, c = 9.179 A, beta = 93.75(3) degrees, Z = 4) contains [Ge4Se10]8- ions with homonuclear Ge-Ge bonds (dGe-Ge = 2.432 A), which may be described as two ethane-like Se3Ge-GeSeSe2/2 fragments sharing two selenium atoms. Ba2Ge2Se5 (Pnma, a = 12.594(3) A, b = 9.174(2) A, c = 9.160(2) A, Z = 4) contains [Ge2Se5]4- anions built up by two edge-sharing GeSe4 tetrahedra, in which one terminal Se atom is replaced by a lone pair from the divalent germanium atom. The alkaline earth cations are arranged between the complex anions, each coordinated by eight or nine selenium atoms. Ba2Ge2Se5 is a mixed-valence compound with GeII and GeIV coexisting within the same anion. Sr2Ge2Se5 contains exclusively GeIII. These compounds possess electronic formulations that correspond to (Sr2+)2(Ge3+)2(Se2-)5 and (Ba2+)2- Ge2+Ge4+(Se2-)5. Calculations of the electron localization function (ELF) reveal clearly both the lone pair on GeII in Ba2Ge2Se5 and the covalent Ge-Ge bond in Sr2Ge2Se5. Analysis of the ELF topologies shows that the GeIII-Se and GeIV-Se covalent bonds are almost identical, whereas the GeII-Se interactions are weaker and more ionic in character.  相似文献   

7.
Dai Z  Shi Z  Li G  Zhang D  Fu W  Jin H  Xu W  Feng S 《Inorganic chemistry》2003,42(23):7396-7402
A family of inorganic-organic hybrid vanadium selenites with zero-, one-, two-, and three-dimensional structures, (1,10-phen)(2)V(2)SeO(7), (2,2'-bipy)VSeO(4), (4,4'-bipy)V(2)Se(2)O(8), and (4,4'-bipy)(2)V(4)Se(3)O(15).H(2)O (where phen = phenanthroline and bipy = bipyridine), were hydrothermally synthesized and characterized by single-crystal X-ray diffraction. Different bidentate organodiamine ligands and reactant concentrations were used in the four reaction systems, which are responsible for the variety of structural dimensions of the compounds. (1,10-phen)(2)V(2)SeO(7) crystallizes in a monoclinic system with space group P2(1)/n and cell parameters a = 8.6509(3) A,( )b = 7.8379(2) A, c = 34.0998(13) A, beta = 91.503(2) degrees, and Z = 4. (2,2'-bipy)VSeO(4) crystallizes in a monoclinic system with space group C2/c and cell parameters a = 17.0895(12) A, b = 14.7707(10) A, c = 11.7657(8) A, beta = 131.354(3) degrees, and Z = 8. (4,4'-bipy)V(2)Se(2)O(8) crystallizes in a triclinic system with space group Ponemacr; and cell parameters a = 7.1810(10) A, b = 10.8937(13) A, c = 11.1811(15) A, alpha = 115.455(3) degrees, beta = 107.582(3) degrees, gamma = 91.957(4) degrees, and Z = 2. (4,4'-bipy)(2)V(4)Se(3)O(15).H(2)O crystallizes in a monoclinic system with space group Pc and cell parameters a = 7.9889(9) A, b = 7.8448 A, c = 23.048(3) A, beta = 99.389(4) degrees, and Z = 2. (1,10-phen)(2)V(2)SeO(7) has an isolated structure, (2,2'-bipy)VSeO(4) has a chain structure, (4,4'-bipy)V(2)Se(2)O(8) has a layered structure, and (4,4'-bipy)(2)V(4)Se(3)O(15).H(2)O has a framework structure. The chains are constructed from VO(4)N(2) octahedra and SeO(3) pyramids, laced by organic ligands (2,2'-bipy). The layers consist of vanadium selenite chains [(VO)(2)(SeO(3))(2)]( infinity ), linked by 4,4'-bipy molecules. The framework is composed of vanadium selenite sheets [V(4)Se(3)O(16)]( infinity ), pillared by 4,4'-bipy molecules. All of the compounds are thermally stable to 300 degrees C, and the magnetic susceptibilities confirm the existence of tetravalent V atoms in the antiferromagnetic (4,4'-bipy)V(2)Se(2)O(8) complex and mixed tetravalent and pentavalent V atoms in the paramagnetic complex (4,4'-bipy)(2)V(4)Se(3)O(15).H(2)O.  相似文献   

8.
Single crystals of A2ThP3Se9 (A = K (I), Rb (II)) and Cs4Th2PsSe17 (III) form from the reaction of Th and P in a molten A2Se3/Se (A = K, Rb, Cs) flux at 750 degrees C for 100 h. Compound I crystallizes in the triclinic space group P1 (No. 2) with unit cell parameters a = 10.4582(5) A, b = 16.5384(8) A, c = 10.2245(5) A, alpha = 107.637(1); beta = 91.652(1); gamma = 90.343(1) degrees, and Z = 2. Compound II crystallizes in the triclinic space group P1 (No. 2) with the unit cell parameters a = 10.5369(5) A, b = 16.6914(8) A, c = 10.2864(5) A, alpha = 107.614(1) degrees, beta = 92.059(1) degrees, gamma = 90.409(1) degrees, and Z = 2. These structures consist of infinite chains of corner-sharing [Th2Se14] units linked by (P2Se6)4- anions in two directions to form a ribbonlike structure along the [100] direction. Compounds I and II are isostructural with the previously reported K2UP3Se9. Compound III crystallizes in the monoclinic space group P2(1)/c (No. 14) with unit cell parameters a = 10.238(1) A, b = 32.182(2) A, c = 10.749(1) A; beta = 95.832(1) degrees, and Z = 4. Cs4Th2P5Se17 consists of infinite chains of corner-sharing, polyhedral [Th2Se13] units that are also linked by (P2Se6)4- anions in the [100] and [010] directions to form a layered structure. The structure of III features an (Se2)2- anion that is bound eta 2 to Th(2) and eta 1 to Th(1). This anion influences the coordination sphere of the 9-coordinate Th(2) atom such that it is best described as bicapped trigonal prismatic where the eta 2-bound anion occupies one coordination site. The composition of III may be formulated as Cs4Th2(P2Se6)5/2(Se2) due to the presence of the (Se2)2- unit. Raman spectra for these compounds and their interpretation are reported.  相似文献   

9.
The crystal structure of a new hybrid product comprised of two rigid building blocks, namely dirhodium(II) tetraacetate, [Rh(2)(O(2)CCH(3))(4)] (1), and 2,6-diselenaspiro[3.3]heptane, Se(2)C(5)H(8) (2), has been solved ab initio using laboratory source X-ray powder diffraction (XRPD) data. The rigid body refinement approach has been applied to assist in finding an adequate model and to reduce the number of the refined parameters. Complex [Rh(2)(O(2)CCH(3))(4).mu(2)-Se(2)C(5)H(8)-Se,Se'] (3) conforms to the triclinic unit cell with lattice parameters of a = 8.1357(4), b = 8.7736(4), and c = 15.2183(8) A, alpha = 77.417(3), beta = 88.837(3), and gamma = 69.276(4) degrees, V = 989.66(8) A(3), and Z = 2. The centrosymmetric P space group was selected for calculations. The final values of the reduced wR(p), R(p), and chi(2) were calculated at 0.0579, 0.0433, and 5.95, respectively. The structure of 3 is a one-dimensional zigzag polymer built on axial Rh...Se interactions at 2.632(6) A. The 2,6-diselenaspiro[3.3]heptane ligand acts as a bidentate linker bridging dirhodium units via both selenium atoms. The geometrical parameters of individual groups for rigid body refinement have been obtained from X-ray powder data for dirhodium(II) tetraacetate (1) and from single-crystal X-ray diffraction for diselenium molecule 2. The crystal structures of 1 and 2 are reported here for the first time. For 1 indexing based on XRPD data has resulted in the triclinic unit cell P with lattice parameters of a = 8.3392(7), b = 5.2216(5), and c = 7.5264(6) A, alpha = 95.547(10), beta = 78.101(6), and gamma = 104.714(13) degrees, V = 309.51(5) A(3), and Z = 1. The final values were wR(p) = 0.0452, R(p) = 0.0340, and chi(2) = 1.99. The 1D polymeric motif built on axial Rh.O interactions of the centrosymmetric dirhodium units has been confirmed for the solid-state structure of 1. Compound 2,6-diselenaspiro[3.3]heptane (2) conforms to the monoclinic space group P2(1)/c with the unit cell parameters of a = 5.9123(4), b = 19.6400(13), and c = 5.8877(4) A, beta = 108.5500(10) degrees, V = 648.15(8) A(3), and Z = 4.  相似文献   

10.
CuBiP(2)Se(6), AgBiP(2)Se(6), and AgBiP(2)S(6) were prepared from the corresponding elements. CuBiP(2)Se(6) and AgBiP(2)Se(6) crystallize in the space group R with a = 6.5532(16) A and c = 39.762(13) A for CuBiP(2)Se(6) and a = 6.6524(13) A and c = 39.615(15) A for AgBiP(2)Se(6). AgBiP(2)S(6) crystallizes in the triclinic space group P with a = 6.3833(13) A, b = 7.1439(14) A, c = 9.5366(19) A, alpha = 91.89(3) degrees , beta = 91.45(3) degrees , gamma = 94.05(3) degrees . CuBiP(2)Se(6) was found to exhibit a temperature-dependent antiferroelectric ordering of the Cu(+) and Bi(3+) ions in the lattice. An intermediate and a fully ordered structure were refined at 173 and 97 K, respectively. Electronic band and total energy calculations at the DFT level clearly suggest that the antiferroelectric model is energetically favored over the paraelectric and hypothetical ferrielectric models. This phase transition can be classified as a second-order Jahn-Teller distortion. The antiferroelectric state of CuBiP(2)Se(6) is an indirect gap semiconductor. The compounds were characterized with differential thermal analysis and solid-state UV/vis diffuse reflectance spectroscopy. Generalized implications regarding the expected ferroelectric behavior of compounds in the CuMP(2)Se(6) system (M = trivalent metal) are discussed.  相似文献   

11.
Two polytypes of potassium rare-earth-metal hexaselenodiphosphates(IV), K(RE)P(2)Se(6) (RE = Y, La, Ce, Pr, Gd), have been synthesized from the stoichiometric reaction of RE, P, Se, and K(2)Se(4) at 750 degrees C. Both single-crystal and powder X-ray diffraction analyses showed that the structures of these polytypes vary with the size of the rare earth metals. For the smaller rare-earth metals, Y and Gd, K(RE)P(2)Se(6) crystallized in the orthorhombic space group P2(1)2(1)2(1). The yttrium compound was studied by single-crystal X-ray diffraction with the cell parameters a = 6.7366(5) ?, b = 7.4286(6) ?, c = 21.603(2) ?, and Z = 4. This structure type comprises a layered, square network of yttrium atoms that are bound to four distinct [P(2)Se(6)](4)(-) units through selenium bonding. Each [P(2)Se(6)](4)(-) unit possesses a Se atom that is not bound to any Y atom but is pointing out into the interlayer spacing, into an environment of potassium cations. For larger rare-earth metals, La, Ce, and Pr, K(RE)P(2)Se(6) crystallized in a second, monoclinic polytype, the structure of which has been published. Both of these two different polytypes can be related to each other and several other isoelectronic chalcophosphate structures based on a Parthé valence electron concentration analysis. These structures include Ag(4)P(2)S(6), K(2)FeP(2)S(6), and the hexagonal M(II)PS(3) structure types. The magnetic susceptibilities of the title compounds have been studied, and the behavior can been explained based on a simple set of unpaired f-electrons. The diffuse reflectance spectroscopy also showed that these yellow plates are moderately wide band gap ( approximately 2.75 eV) semiconductors.  相似文献   

12.
The synthesis and characterization of the neutral uranylisocyanate UO(2)(NCO)(2)(OP(NMe(2))(3))(2) [crystal data: monoclinic, P2(1)/c, a = 8.512(2) A, b = 10.931(2) A, c = 14.329(3) A, beta = 103.923(3) degrees , V = 1294.0(4) A(3), Z = 2] and isocyanato uranate (Et(4)N)(6)[(UO(2))(2)(NCO)(5)O](2) x 2CH(3)CN x H(2)O [crystal data: monoclinic, P2(1)/c, a = 17.2787(2) A, b = 15.560(1) A, c = 32.7619(4) A, beta = 94.0849(5) degrees , V = 8786.5(2) A(3), Z = 4] are reported. Not only are these compounds the first unambiguously characterized uranium isocyanates regardless of the oxidation state for uranium, but they are also the first structurally characterized actinide isocyanates. Both compounds show coordination of the OCN moiety through nitrogen to uranium and were characterized using IR and (1)H, (13)C, (14)N, and (31)P NMR spectroscopy and X-ray diffraction.  相似文献   

13.
Three new palladium compounds, PdSeO3, PdSe2O5, and Na2Pd(SeO4)2, containing selenium oxoanions of both Se(IV) and Se(VI) have been prepared under mild hydrothermal conditions. PdSe2O5 and Na2Pd(SeO4)2 both possess one-dimensional structures. Within the structure of PdSe2O5, [PdO4] square planar building blocks are joined together through diselenite, Se2O52-, anions, and form a zigzag chain along the c axis. In Na2Pd(SeO4)2, [PdO4] units are connected by two selenate, SeO42-, anions, and extend along the a axis to form a [Pd(SeO4)2]2- chain. Na+ cations reside in the space between the [Pd(SeO4)2]2- chains and act as counter cations. Unlike above two compounds, PdSeO3 exhibits a layered structure. In the structure of PdSeO3, [PdO4] units are connected to each other by corner-sharing and form a zigzag chain along the b axis. The chains are further joined together by tridentate selenite, SeO32-, anions to form layers in the [ab] plane that stack along the c axis. Crystallographic data: (193 K; Mo Kalpha, lambda=0.71073 A): PdSeO3, monoclinic, space group P21/m, a=3.8884(5) A, b=6.4170(8) A, c=6.1051(7) A, beta=96.413(2) degrees, V=151.38(3) A3, Z=2; PdSe2O5, monoclinic, space group C2/c, a=12.198(2) A, b=5.5500(8) A, c=7.200(1) A, beta=107.900(2) degrees , V=463.8(1) A3, Z=4; Na2Pd(SeO4)2, triclinic, space group P, a=4.9349(11) A, b=5.9981(13) A, c=7.1512 (15) A, alpha=73.894(4) degrees, beta=86.124(4) degrees, gamma=70.834(4) degrees, V=192.03(7) A3, Z=1.  相似文献   

14.
An outstanding example of structural diversity and complexity is found in the compounds with the general formula ABi(3)Q(5) (A = alkali metal; Q = chalcogen). gamma-RbBi(3)S(5) (I), alpha-RbBi(3)Se(5) (II), beta-RbBi(3)Se(5) (III), gamma-RbBi(3)Se(5) (IV), CsBi(3)Se(5) (V), RbBi(3)Se(4)Te (VI), and RbBi(3)Se(3)Te(2) (VII) were synthesized from A(2)Q (A = Rb, Cs; Q = S, Se) and Bi(2)Q(3) (Q = S, Se or Te) at temperatures above 650 degrees C using appropriate reaction protocols. gamma-RbBi(3)S(5) and alpha-RbBi(3)Se(5) have three-dimensional tunnel structures while the rest of the compounds have lamellar structures. gamma-RbBi(3)S(5), gamma-RbBi(3)Se(5), and its isostructural analogues RbBi(3)Se(4)Te and RbBi(3)Se(3)Te(2) crystallize in the orthorhombic space group Pnma with a = 11.744(2) A, b = 4.0519(5) A, c = 21.081(3) A, R1 = 2.9%, wR2 = 6.3% for (I), a = 21.956(7) A, b = 4.136(2) A, c = 12.357(4) A, R1 = 6.2%, wR2 = 13.5% for (IV), and a = 22.018(3) A, b = 4.2217(6) A, c = 12.614(2) A, R1 = 6.2%, wR2 = 10.3% for (VI). gamma-RbBi(3)S(5) has a three-dimensional tunnel structure that differs from the Se analogues. alpha-RbBi(3)Se(5) crystallizes in the monoclinic space group C2/m with a = 36.779(4) A, b = 4.1480(5) A, c = 25.363(3) A, beta = 120.403(2) degrees, R1 = 4.9%, wR2 = 9.9%. beta-RbBi(3)Se(5) and isostructural CsBi(3)Se(5) adopt the space group P2(1)/m with a = 13.537(2) A, b = 4.1431(6) A, c = 21.545(3) A, beta = 91.297(3) degrees, R1 = 4.9%, wR2 = 11.0% for (III) and a = 13.603(3) A, b = 4.1502(8) A, c = 21.639(4) A, beta = 91.435(3) degrees, R1 = 6.1%, wR2 = 13.4% for (V). alpha-RbBi(3)Se(5) is also three-dimensional, whereas beta-RbBi(3)Se(5) and CsBi(3)Se(5) have stepped layers with alkali metal ions found disordered in several trigonal prismatic sites between the layers. In gamma-RbBi(3)Se(5) and RbBi(3)Se(4)Te, the layers consist of Bi(2)Te(3)-type fragments, which are connected in a stepwise manner. In the mixed Se/Te analogue, the Te occupies the chalcogen sites that are on the "surface" of the layers. All compounds are narrow band-gap semiconductors with optical band gaps ranging 0.4-1.0 eV. The thermal stability of all phases was studied, and it was determined that gamma-RbBi(3)Se(5) is more stable than the and alpha- and beta-forms. Electronic band calculations at the density functional theory (DFT) level performed on alpha-, beta-, and gamma-RbBi(3)Se(5) support the presence of indirect band gaps and were used to assess their relative thermodynamic stability.  相似文献   

15.
The Cs-Cu-Q (Q = S, Se) system has been investigated using copper metal, cesium chloride, and alkali-metal polychalcogenide salts under mild hydrothermal reaction conditions. Heteropolychalcogenide salts and mixtures of known polysulfide and polyselenide salts have been used as reagents. The reaction products contain the alpha-CsCuQ(4) and CsCuQ(6) structures. The alpha-CsCuQ(4) phase exhibits a smooth transition in lattice parameters from the pure sulfur to the pure selenium phases, based on Vegard's law. The CsCuQ(6) phase has been prepared as the pure sulfur analog and a selenium rich analog. The single-crystal structures of the disordered compounds alpha-CsCuS(2)Se(2) (P2(1)2(1)2(1), Z = 4, a = 5.439(1) ?, b = 8.878(2) ?, c = 13.762(4) ?) and CsCuS(1.6)Se(4.4) (P&onemacr;, Z = 2, a = 11.253(4) ?, b = 11.585(2) ?, c = 7.211(2) ?, alpha = 92.93 degrees, beta = 100.94 degrees, gamma = 74.51 degrees ) have been solved using a correlated-site occupancy model. These disordered structures display a polychalcogenide geometry in which the sulfur atoms prefer positions that are bound to copper. The optical absorption spectra of these materials have been investigated. The optical band gap varies as a function of the sulfur-selenium ratio. Extended Hückel crystal orbital calculations have been performed to investigate the electronic structure and bonding in these compounds in an attempt to explain the site distribution of sulfur and selenium.  相似文献   

16.
The rare-earth metal(III) oxide selenides of the formula La4O4Se[Se2], Ce4O4Se[Se2], Pr4O4Se[Se2], Nd4O4Se[Se2], and Sm4O4Se[Se2] were synthesized from a mixture of the elements with selenium dioxide as the oxygen source at 750 degrees C. Single crystal X-ray diffraction was used to determine their crystal structures. The isostructural compounds M4O4Se[Se2] (M=La, Ce, Pr, Nd, Sm) crystallize in the orthorhombic space group Amm2 with cell dimensions a=857.94(7), b=409.44(4), c=1316.49(8) pm for M=La; a=851.37(6), b=404.82(3), c=1296.83(9) pm for M=Ce; a=849.92(6), b=402.78(3), c=1292.57(9) pm for M=Pr; a=845.68(4), b=398.83(2), c=1282.45(7) pm for M=Nd; and a=840.08(5), b=394.04(3), c=1263.83(6) pm for M=Sm (Z=2). In their crystal structures, Se2- anions as well as [Se-Se]2- dumbbells interconnect {[M4O4]4+} infinity 2 layers. These layers are composed of three crystallographically different, distorted [OM4]10+ tetrahedra, which are linked via four common edges. The compounds exhibit strong Raman active modes at around 215 cm(-1), which can be assigned to the Se-Se stretching vibration. Optical band gaps for La4O4Se[Se2], Ce4O4Se[Se2], Pr4O4Se[Se2], Nd4O4Se[Se2], and Sm4O4Se[Se2] were derived from diffuse reflectance spectra. The energy values at which absorption takes place are typical for semiconducting materials. For the compounds M4O4Se[Se2] (M=La, Pr, Nd, Sm) the fundamental band gaps, caused by transitions from the valence band to the conduction band (VB-CB), lie around 1.9 eV, while for M=Ce an absorption edge occurs at around 1.7 eV, which can be assigned to f-d transitions of Ce3+. Magnetic susceptibility measurements of Ce4O4Se[Se2] and Nd4O4Se[Se2] show Curie-Weiss behavior above 150 K with derived experimental magnetic moments of 2.5 micro B/Ce and 3.7 micro B/Nd and Weiss constants of theta p=-64.9 K and theta p=-27.8 K for the cerium and neodymium compounds, respectively. Down to 1.8 K no long-range magnetic ordering could be detected. Thus, the large negative values for theta p indicate the presence of strong magnetic frustration within the compounds, which is due to the geometric arrangement of the magnetic sublattice in form of [OM4]10+ tetrahedra.  相似文献   

17.
The ternary alkali selenophosphates KPSe6 and RbPSe6 crystallize in the polar orthorhombic space group Pca2(1) with a = 11.7764(17) A, b = 6.8580(10) A, c = 11.4596(16) A, and Z = 4 for RbPSe6. CsPSe6 crystallizes in the monoclinic space group P2/n with a = 6.877(3) A, b = 12.713(4) A, c = 11.242(4) A, beta = 92.735(7) degrees, and Z = 4. All compounds feature the one-dimensional infinite chain of [PSe2(Se)4-], where each P atom is connected with Se4(2-) bridge. These compounds show reversible glass-crystal transition, and 31P NMR data suggest that crystallization and infinite [PSe(6-)] chain formation are coupled processes.  相似文献   

18.
合成了以苯硒酚为配体的四核银族合物[Me2N]2[Ag4(SePh)6]·CH3OH,并用X射线单晶衍射法测定了其晶体结构。簇阴离子的核心Ag4Se6是由4个Ag原子组成的四面体内接于6个Se原子组成的变形八面体中,形成了类金刚烷型结构。  相似文献   

19.
Huang FQ  Ibers JA 《Inorganic chemistry》2001,40(10):2346-2351
The alkali metal/group 4 metal/polychalcogenides Cs(4)Ti(3)Se(13), Rb(4)Ti(3)S(14), Cs(4)Ti(3)S(14), Rb(4)Hf(3)S(14), Rb(4)Zr(3)Se(14), Cs(4)Zr(3)Se(14), and Cs(4)Hf(3)Se(14) have been synthesized by means of the reactive flux method at 823 or 873 K. Cs(4)Ti(3)Se(13) crystallizes in a new structure type in space group C(2)(2)-P2(1) with eight formula units in a monoclinic cell at T = 153 K of dimensions a = 10.2524(6) A, b = 32.468(2) A, c = 14.6747(8) A, beta = 100.008(1) degrees. Cs(4)Ti(3)Se(13) is composed of four independent one-dimensional [Ti(3)Se(13)(4-)] chains separated by Cs(+) cations. These chains adopt hexagonal closest packing along the [100] direction. The [Ti(3)Se(13)(4-)] chains are built from the face- and edge-sharing of pentagonal pyramids and pentagonal bipyramids. Formal oxidation states cannot be assigned in Cs(4)Ti(3)Se(13). The compounds Rb(4)Ti(3)S(14), Cs(4)Ti(3)S(14), Rb(4)Hf(3)S(14), Rb(4)Zr(3)Se(14), Cs(4)Zr(3)Se(14), and Cs(4)Hf(3)Se(14) crystallize in the K(4)Ti(3)S(14) structure type with four formula units in space group C(2)(h)()(6)-C2/c of the monoclinic system at T = 153 K in cells of dimensions a = 21.085(1) A, b = 8.1169(5) A, c = 13.1992(8) A, beta = 112.835(1) degrees for Rb(4)Ti(3)S(14);a = 21.329(3) A, b = 8.415(1) A, c = 13.678(2) A, beta = 113.801(2) degrees for Cs(4)Ti(3)S(14); a = 21.643(2) A, b = 8.1848(8) A, c = 13.331(1) A, beta = 111.762(2) degrees for Rb(4)Hf(3)S(14); a = 22.605(7) A, b = 8.552(3) A, c = 13.880(4) A, beta = 110.919(9) degrees for Rb(4)Zr(3)Se(14); a = 22.826(5) A, b = 8.841(2) A, c = 14.278(3) A, beta = 111.456(4) degrees for Cs(4)Zr(3)Se(14); and a = 22.758(5) A, b = 8.844(2) A, c = 14.276(3) A, beta = 111.88(3) degrees for Cs(4)Hf(3)Se(14). These A(4)M(3)Q(14) compounds (A = alkali metal; M = group 4 metal; Q = chalcogen) contain hexagonally closest-packed [M(3)Q(14)(4-)] chains that run in the [101] direction and are separated by A(+) cations. Each [M(3)Q(14)(4-)] chain is built from a [M(3)Q(14)] unit that consists of two MQ(7) pentagonal bipyramids or one distorted MQ(8) bicapped octahedron bonded together by edge- or face-sharing. Each [M(3)Q(14)] unit contains six Q(2)(2-) dimers, with Q-Q distances in the normal single-bond range 2.0616(9)-2.095(2) A for S-S and 2.367(1)-2.391(2) A for Se-Se. The A(4)M(3)Q(14) compounds can be formulated as (A(+))(4)(M(4+))(3)(Q(2)(2-))(6)(Q(2-))(2).  相似文献   

20.
本文通过溶剂热法合成了2种新的有机杂化锌碲化物[Zn(dien)2](Te2)(1)和镍硒化物[Ni(dien)2](Se3)(2)(dien=二乙烯三胺),单晶X射线衍射分析结果表明,化合物1属于正交晶系,Cmca空间群,晶胞参数:a=9.212(2),b=10.854(3),c=15.723(4),Z=4。化合物2属于正交晶系,Pna21空间群,晶胞参数:a=18.047(4),b=9.8236(19),c=9.0079(19),Z=4。在两种化合物中,1的阳离子中Zn2 与2个dien螯合形成稍变形的八面体几何构型,阴离子为哑铃型的Te22-。2的阳离子中Ni2 离子与2个dien螯合形成稍变形的八面体几何构型,阴离子为‘V’字型的Se32-。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号