首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structure and stability of hydrogen bonds in alpha-chitin were investigated by (13)C solid-state NMR measurements at different temperatures. Splitting of the carbonyl carbon signal for alpha-chitin was interpreted as two types of hydrogen bonding; the peaks at 173.5 and 175.8 ppm were assigned, respectively, to a carbonyl carbon hydrogen bonded exclusively to the NH group and a carbonyl carbon hydrogen-bonded to both NH and C(6)-OH groups. Approximately 60% of carbonyl groups exclusively contributed to the intermolecular hydrogen bonding and ca. 40% of them to the combination of intermolecular and intramolecular hydrogen bonding. Internal rotation around the C(5)-C(6) bond was detected at 55 degrees C.  相似文献   

2.
A new class of compounds, the 2-hydroxythioacetophenones, and related compounds have recently been synthesized. The hydrogen-bond system has been characterized by NMR chemical shifts and deuterium isotope effects on these as well as by DFT calculations. Use of solid-state (13)C NMR has enabled measurements of the intrinsic deuterium isotope effects of the most abundant tautomer of beta-thioxoketones. The compounds show very interesting long-range deuterium isotope effects on the thiocarbonyl carbon. The intramolecular hydrogen bonds of o-hydroxythioacetophenones are found to be slightly stronger than those of the corresponding acetophenones. The reactivity and stability of the compounds can be related to hydrogen bonding and to the presence of electron donating substituents.  相似文献   

3.
4.
Knowledge of chemical shift-structure relationships could greatly facilitate the NMR chemical shift assignment and structure refinement processes that occur during peptide/protein structure determination via NMR spectroscopy. To determine whether such correlations exist for polar side chain containing amino acid residues the serine dipeptide model, For-L-Ser-NH(2), was studied. Using the GIAO-RHF/6-31+G(d) and GIAO-RHF/TZ2P levels of theory the NMR chemical shifts of all hydrogen ((1)H(N), (1)H(alpha), (1)H(beta1), (1)H(beta2)), carbon ((13)C(alpha), (13)C(beta), (13)C') and nitrogen ((15)N) atoms have been computed for all 44 stable conformers of For-L-Ser-NH(2). An attempt was made to establish correlation between chemical shift of each nucleus and the major conformational variables (omega(0), phi, psi, omega(1), chi,(1) and chi(2)). At both levels of theory a linear correlation can be observed between (1)H(alpha)/phi, (13)C(alpha)/phi, and (13)C(alpha)/psi. These results indicate that the backbone and side-chain structures of For-L-Ser-NH(2) have a strong influence on its chemical shifts.  相似文献   

5.
The trifluoromethyl anion (CF3) displays 13C NMR chemical shift (175.0 ppm) surprisingly larger than neutral (CHF3, 122.2 ppm) and cation (CF3+, 150.7 ppm) compounds. This unexpected deshielding effect for a carbanion is investigated by density functional theory calculations and decomposition analyses of the 13C shielding tensor into localized molecular orbital contributions. The present work determines the shielding mechanisms involved in the observed behaviour of the fluorinated anion species, shedding light on the experimental NMR data and demystify the classical correlation between electron density and NMR chemical shift. The presence of fluorine atoms induces the carbon lone pair to create a paramagnetic shielding on the carbon nucleus.  相似文献   

6.
The substituent chemical shift (SCS) has been applied to the assignment of the ~(13)C NMRspectrum of chlorinated polyethylene (CPE). CPE of different chlorine contents has been em-ployed and their sequence structure discussed. The results show that characteristic of CPEwith medium chlorine content is the dichloroethane structure in molecular chain. SCS param-etets have been obtained from the ~(13)C NMR spectra. It was found that the effects of chlorinecontent and temperature on SCS are negligible, but the substituent parameter S_1 reduced by0.39 ppm when C_2Cl_4 was added to solvent ODCB.  相似文献   

7.
The structures of seven polysubstituted alkylpyridines, recently isolated from coal tar, were elucidated using their 13C NMR spectra. For tri- and tetra-substituted derivatives the correct isomeric structure was found from their conformity with the proximity effect, i.e. the deviations from additivity when calculating chemical shifts from substituent increments (SCS) for sterically crowded molecules. This effect manifests itself both on the ring and on the alkyl carbon signals, and in most cases shifts their position upfield.  相似文献   

8.
The 1H chemical shifts of 124 compounds containing a variety of functional groups have been recorded in CDCl3 and DMSO-d6 (henceforth DMSO) solvents. The 1H solvent shift Delta delta = delta(DMSO) - delta(CDCl3) varies from -0.3 to +4.6 ppm. This solvent shift can be accurately predicted (rms error 0.05 ppm) using the charge model of alpha, beta, gamma and long-range contributions. The labile protons of alcohols, acids, amines and amides give both, the largest solvent shifts and the largest errors. The contributions for the various groups are tabulated and it is shown that for H.C.C.X gamma-effects (X = OH, NH, =O, NH.CO) there is a dihedral angle dependence of the gamma-effect. The group contributions are discussed in terms of the possible solvent-solute interactions. For protic hydrogens, hydrogen bonding is the dominant interaction, but for the remaining protons solvent anisotropy and electric field effects appear to be the major factors.  相似文献   

9.
(119)Sn chemical shift tensors of crystalline trialkyltin functionalized octameric spherosilicates, Si(8)O(20)(SnMe(3))(8), have been determined by fitting sideband intensities in solid-state magic angle spinning (MAS) NMR spectra. Tin chemical shift parameters are exquisitely sensitive to the presence of water of crystallization. Both hydrogen bonding and incipient oxygen-tin bonding from molecular water impact the local tin environment. Tin chemical shift tensors in the crystalline derivatives reflect the changes in geometry and coordination number at the tin centers. Chemical shift correlations on the crystalline derivatives, with known x-ray structures, are used to infer the tin coordination environment in an amorphous sample.  相似文献   

10.
The experimental 13C NMR chemical shift of the central carbon atom in the octahedral [(Ph3PAu)6C]2+ cluster was investigated on the basis of relativistic density functional calculations. In order to arrive at independent model conclusions regarding the value of the chemical shift, a systematic study of the dependence of the cluster structure on the phosphine ligands, the chosen density functionals, and the basis set size was conducted. The best structures obtained were then used in the NMR calculations. Because of the cage-like cluster structure a pronounced deshielding of the central carbon nucleus could have been expected. However, upon comparison with the 13C NMR properties of the related complex [C{Au[P(C6H5)2(p-C6H4NMe2)]}6]2+, Schmidbaur et al. have assigned a signal at delta=135.2 ppm to the interstitial carbon atom. Our calculations confirm this value in the region of the aromatic carbon atoms of the triphenylphosphine ligands. The close-lying signals of the 108 phenyl carbon atoms can explain the difficulties of assigning them experimentally.  相似文献   

11.
The nuclear magnetic resonance (NMR) chemical shift is extremely sensitive to molecular geometry, hydrogen bonding, solvent, temperature, pH, and concentration. Calculated magnetic shielding constants, converted to chemical shifts, can be valuable aids in NMR peak assignment and can also give detailed information about molecular geometry and intermolecular effects. Calculating chemical shifts in solution is complicated by the need to include solvent effects and conformational averaging. Here, we review the current state of NMR chemical shift calculations in solution, beginning with an introduction to the theory of calculating magnetic shielding in general, then covering methods for inclusion of solvent effects and conformational averaging, and finally discussing examples of applications using calculated chemical shifts to gain detailed structural information.  相似文献   

12.
The 13C NMR spectra of nine dichlorinated bicyclo[2.2.1]heptanes (norbornanes) have been measured and assigned. The pairwise effects of chlorine substituents which cause deviations from the additivity of single-substituent effects were investigated and are discussed. The largest effect found is the high-field shift of carbons bearing vicinal cis substituents. In the case of geminal substitution deviations from additivity were found to be to low field and large in the γ, smaller in the β and negligible in the α chemical shifts. The observed deviations for 1,3-disubstituted cases vary from ?3.2 to +1.1 ppm at different carbons, allowing no simple explanation. Replacement of α-hydrogen in a diaxial 1,3-arrangement by CH3, OH or CI causes the single substituent effect, namely the γa effect, to change considerably.  相似文献   

13.
A procedure for developing 13C NMR chemical shift additivity rules for all 136 polymethoxyxanthones and all 136 polyacetoxyxanthones, based on multiple linear regression analysis, is reported. The influence of steric interactions between the substituents on the chemical shifts of the carbon atoms in the xanthone ring system is discussed and included in the calculations of the additivity rules for the polymethoxyxanthones. The derived chemical shift increments are implemented into the computer program SEOX 1. The extended program, SEOX 2, allows an automated structure elucidation of polyhydroxy-, polymethoxy- and polyacet-oxyxanthones. The increments are tested using the leave-one-out method in conjunction with SEOX 2, and have been found to be very suitable for this purpose.  相似文献   

14.
An analysis of 17O carbonyl chemical shifts of 50 substituted benzaldehydes leads to an empirical equation, delta(cal)(17O) = 564.0 + (sigma)(delta)o + (sigma)(delta)m + (sigma)(delta)p + C, for calculating 17O chemical shifts. This equation is based on a linear regression analysis using 11 substituent parameters and leads to good conformity with the expected data.  相似文献   

15.
The (13)C NMR chemical shifts for alpha-D-lyxofuranose, alpha-D-lyxopyranose (1)C(4), alpha-D-lyxopyranose (4)C(1), alpha-D-glucopyranose (4)C(1), and alpha-D-glucofuranose have been studied at ab initio and density-functional theory levels using TZVP quality basis set. The methods were tested by calculating the nuclear magnetic shieldings for tetramethylsilane (TMS) at different levels of theory using large basis sets. Test calculations on the monosaccharides showed B3LYP(TZVP) and BP86(TZVP) to be cost-efficient levels of theory for calculation of NMR chemical shifts of carbohydrates. The accuracy of the molecular structures and chemical shifts calculated at the B3LYP(TZVP) level is comparable to those obtained at the MP2(TZVP) level. Solvent effects were considered by surrounding the saccharides by water molecules and also by employing a continuum solvent model. None of the applied methods to consider solvent effects was successful. The B3LYP(TZVP) and MP2(TZVP)(13)C NMR chemical shift calculations yielded without solvent and rovibrational corrections an average deviation of 5.4 ppm and 5.0 ppm between calculated and measured shifts. A closer agreement between calculated and measured chemical shifts can be obtained by using a reference compound that is structurally reminiscent of saccharides such as neat methanol. An accurate shielding reference for carbohydrates can be constructed by adding an empirical constant shift to the calculated chemical shifts, deduced from comparisons of B3LYP(TZVP) or BP86(TZVP) and measured chemical shifts of monosaccharides. The systematic deviation of about 3 ppm for O(1)H chemical shifts can be designed to hydrogen bonding, whereas solvent effects on the (1)H NMR chemical shifts of C(1)H were found to be small. At the B3LYP(TZVP) level, the barrier for the torsional motion of the hydroxyl group at C(6) in alpha-D-glucofuranose was calculated to 7.5 kcal mol(-1). The torsional displacement was found to introduce large changes of up to 10 ppm to the (13)C NMR chemical shifts yielding uncertainties of about +/-2 ppm in the chemical shifts.  相似文献   

16.
We have developed an NMR chemical shift prediction system that enables high throughput automatic grading of NMR spectra. In support of high throughput synthetic efforts for our drug discovery program, a rapid and accurate analysis for identity was needed. The system was designed and implemented to take advantage of the NMR assignments that had been tabulated on internally generated research compounds. The system has been operational for four years and has been used in conjunction with an internally written grading program to successfully analyze several hundred thousand samples based only on their 1D 1H spectrum. A focused test of the system's accuracy on 1006 molecules demonstrated the ability to estimate the proton chemical shift with an average error of +/?0.16 ppm. This level of chemical shift accuracy allows for reliable structure confirmation by automated analysis using only proton NMR. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
利用原子电性作用矢量(Atomic electro-negativity interaction vector,AEIV)和原子杂化状态指数(Atomic hybridization state index,AHSI)对萜类化合物中的C原子进行结构表征并与其核磁共振碳谱(13C NMR)建立了优良的定量构谱相关(QSSR)模型.其中29个单萜类化合物中的290个C原子建模的计算值经留一法(Leave-one-out,LOO)交互校验(Cross-validation,CV)预测值的复相关系数(R)分别为0.9900和0.9867,进一步使用倍半萜、二萜、三萜化合物分子中65个C原子的13C NMR化学位移值来检测该模型的稳定性,模型预测值和观测值间复相关系数(R)为0.9777,取得了令人满意的结果.  相似文献   

18.
(1)H, (13)C and (15)N NMR chemical shifts for a variety of novel quinoxalines were determined by different 2D methods and were calculated using the GIAO DFT approach. Comparison with experimental data shows good correlations in the case of (1)H, (13)C and (15)N chemical shifts. Different combinations of basis sets were tested. In non-polar solvents quinoxalines exist as dimers owing to strong hydrogen bonding. Calculations for dimers improve the correlation between experiment and theory. Additive empirical methods for estimating chemical shifts have drawbacks and have to be used with a great care for this type of compound.  相似文献   

19.
A.W. Frahm  R.K. Chaudhuri 《Tetrahedron》1979,35(17):2035-2038
The 13C NMR chemical shifts of eleven hydroxy-, two hydroxymethoxy xanthones, and xanthone-C-glucoside, mangiferin, are presented and analyzed. Hydroxy substituent effects depending on substituent position as well as on shielded ring carbon position have been evaluated. Hydroxy substituent increments for xanthones are proposed. Effects of hydroxylation on carbonyl carbon shift and the methylation of hydroxy group and the corresponding shift increments which are of diagnostic value have been observed and discussed.  相似文献   

20.
The change in (1)H NMR chemical shifts upon hydrogen bonding was investigated using both experimental and theoretical methods. The (1)H NMR spectra of a number of phenols were recorded in CDCl(3) and DMSO solvents. For phenol, 2- and 4-cyanophenol and 2-nitrophenol the OH chemical shifts were measured as a function of concentration in CDCl(3). The plots were all linear with concentration, the gradients varying from 0.940 (phenol) to 7.85 (4-cyanophenol) ppm/M because of competing inter- and intramolecular hydrogen bonding. Ab initio calculations of a model acetone/phenol system showed that the OH shielding was linear with the H...O=C distance (R) for R < 2.1 A with a shielding coefficient of - 7.8 ppm/A and proportional to cos(2)phi where phi is the H...O=C--C dihedral angle. Other geometrical parameters had little effect. It was also found that the nuclear shielding profile is unrelated to the hydrogen bonding energy profile. The dependence of the OH chemical shift on the pi density on the oxygen atom was determined as ca 40 ppm/pi electron. This factor is similar to that for NH but four times the value for sp(2) hybridized carbon atoms. The introduction of these effects into the CHARGE programme allowed the calculation of the (1)H chemical shifts of the compounds studied. The CHARGE calculations were compared with those from the ACD database and from GIAO calculations. The CHARGE calculations were more accurate than other calculations both when all the shifts were considered and also when the OH shifts were excluded. The calculations from the ACD and GIAO approaches were reasonable when the OH shifts were excluded but not as good when all the shifts were considered. The poor treatment of the OH shifts in the GIAO calculations is very likely due to the lack of explicit solvent effects in these calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号