首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Actin filament, F-actin, is a semiflexible polymer with a negative charge, and is one of the main constituents of cell membranes. To clarify the effect of cross talk between a phospholipid membrane and actin filaments in cells, we conducted microscopic observations on the structural changes in actin filaments in a cell-sized (several tens of micrometers in diameter) water droplet coated with a phospholipid membrane such as phosphatidylserine (PS; negatively charged head group) or phosphatidylethanolamine (PE; neutral head group) as a simple model of a living cell membrane. With PS, actin filaments are distributed uniformly in the water phase without adsorption onto the membrane surface between 2 and 6 mM Mg2+, while between 6 and 12 mM Mg2+, actin filaments are adsorbed onto the inner membrane surface. With PE, the actin filaments are uniformly adsorbed onto the inner membrane surface between 2 and 12 mM Mg2+. With both PS and PE membranes, at Mg2+ concentrations higher than 12 mM, thick bundles are formed in the bulk water droplet accompanied by the dissolution of actin filaments from the membrane surface. The attraction between actin filaments and membrane is attributable to an increase in the translational entropy of counterions accompanied by the adsorption of actin filaments onto the membrane surface. These results suggest that a microscopic water droplet coated with phospholipid can serve as an easy-to-handle model of cell membranes.  相似文献   

2.
细胞膜的内膜含有大量的负电荷磷脂,研究F-肌动蛋白与负电荷磷脂的相互作用将有助于更深入地了解细胞骨架与细胞膜的体内相互作用机制.在金片和金电极上分别构建了负电荷磷脂的杂化双层磷脂膜,通过表面等离子体共振方法(SPR)和电化学阻抗技术研究了F-肌动蛋白与负电荷磷脂膜的相互作用.结果表明,F-肌动蛋白可以在没有中间联系蛋白的情况下,直接与负电荷磷脂膜发生相互作用.钙离子可以有效地促进它们的相互作用,表明钙离子在其中发挥了重要作用.高浓度的KCl显著抑制它们的相互作用,表明这种相互作用主要受静电作用影响.实验结果进一步证明在F-肌动蛋白与负电荷磷脂膜相互作用时,除了可以通过其它蛋白发生间接相互作用外,还可以与磷脂膜发生直接的相互作用.  相似文献   

3.
Actin is the component of several biological systems and it plays important role in different biological processes, especially in cell motility. The actin-based motility is accompanied with ATP-consume, and the irreversible ATP hydrolysis is coupled with the polymerization of monomer actin into filamentous form. When an actin monomer is incorporated into a filament, the ATPase is activated, and thereby the polymer formation is promoted. The polymer formation and the ATP hydrolysis is associated with internal motions and significant changes of the conformation in reaction partners. In this article, the ATP nucleotide in monomer actin was exchanged by its non-hydrolyzable analogue adenylyl-imidodiphosphate (AMP.PNP), and using two biophysical methods, electron paramagnetic resonance spectroscopy (EPR) and differential scanning calorimetry (DSC), we studied the local and global changes in globular and fibrous actin following the nucleotide exchange. The paramagnetic probe molecule—a maleimide spin label—was attached to Cys-374 site of monomer actin, and its rotational mobility was derived at different temperature. In DSC measurements the transition temperatures of samples with different bound nucleotides were compared. From the measurements we could conclude, that the nucleotide exchange induces changes in the internal rigidity of the actin systems, AMP.PNP-actins showed longer rotational correlation time and increased thermal transition temperature.  相似文献   

4.
Artificially performing chemical reactions in living biosystems to attain various physiological aims remains an intriguing but very challenging task. In this study, the Schiff base reaction was conducted in cells using Sc(OTf)3 as a catalyst, enabling the in situ synthesis of a hollow covalent organic polymer (HCOP) without external stimuli. The reversible Schiff base reaction mediated intracellular Oswald ripening endows the HCOP with a spherical, hollow porous structure and a large specific surface area. The intracellularly generated HCOP reduced cellular motility by restraining actin polymerization, which consequently induced mitochondrial deactivation, apoptosis, and necroptosis. The presented intracellular synthesis system inspired by the Schiff base reaction has strong potential to regulate cell fate and biological functions, opening up a new strategic possibility for intervening in cellular behavior.  相似文献   

5.
The mitochondria in the lower Malpighian tubule of the insect Rhodnius prolixus can be stimulated by feeding in vivo and by 5-hydroxytryptamine in vitro, to move from a position below the cell cortex to one inside the apical microvilli. During and following their movement into the microvilli, the mitochondria are intimately associated with the microfilaments of the cell cortex and microvillar core bundle. Bridges approximately 14 nm in length and 4 nm in diameter are observed connecting the microvillar microfilaments to the outer mitochondrial membrane and microvillar plasma membrane. Depolymerization of all visible microtubules with colchicine does not inhibit 5-HT-stimulated mitochondrial movement. On the other hand, treatment with cytochalasin B does block mitochondrial movement, suggesting that microfilaments play a role in the mitochondrial motility. We have labeled the microvillar microfilaments, which are 6 nm in diameter, with heavy meromyosin, which supports the contention that they contain actin. A model of the mechanism of mitochondrial movement is presented in which mitochondria slide into position in the microvilli along actin-containing microfilaments in a manner analogous to the sliding actin-myosin model of skeletal muscle.  相似文献   

6.
用微观格点模型对质子交换膜燃料电池(PEMFC)定向结构阴极性能进行了模拟,并与随机结构电极进行了对比,研究了催化剂利用率及电池性能的变化.计算了催化层内的传递和电化学反应,研究了质子、氧气及电化学反应速率在电极厚度方向上的分布,并且通过对比氧气浓度、离子电势和电化学反应速率的分布,证明了Pt/C颗粒在电极厚度方向上定向排布有利于提高电池性能.另外,研究了电极厚度对定向结构电极性能的影响,发现与随机结构电极不同,定向结构电极厚度越小,高电流密度下电极性能越好.  相似文献   

7.
Cytochalasin B (CB) is a potent inhibitor of sugar transport and cell motility in animal cells. We have synthesized and characterized the CB derivative 7-acetylcytochalasin B (CBAc) and have found that it has differential effects on transport and motile processes in fibroblasts. The derivative inhibited sugar transport in human red cells, 3T3 cells, and chicken embryo fibroblasts at micromolar concentrations, although it was less potent than its parent compound. Unlike CB, which causes fibroblasts to round up and arborize at less than 10 microM, CBAc had no effect on fibroblast morphology and membrane ruffling at concentrations as high as 90 microM. Competitive binding experiments using [3H] CB showed that the affinity of CBAc for sites related to sugar transport in the red cell membrane is about one-fourth of that of CB. In contrast, similar experiments using [3H] dihydrocytochalasin B (a derivative which inhibits cell motility but not sugar transport) showed that the affinity of CBAc for sites associated with red cell spectrin and actin is only about 1/20 of that of dihydrocytochalasin B. This study demonstrates that acetylation of the C-7 hydroxyl group of CB reduces its effect on cell morphology and motility much more than its ability to inhibit sugar transport. This observation, together with our earlier work with dihydrocytochalasin B, establishes that the pharmacologic effects of CB on fibroblasts result from the binding of the drug to two distinct classes of receptors and that these receptors interact with different parts of the cytochalasin molecule.  相似文献   

8.
Apicomplexan parasites employ complex and unconventional mechanisms for cell locomotion, host cell invasion, and cell division that are only poorly understood. While immunofluorescence and conventional transmission electron microscopy have been used to answer questions about the localization of some cytoskeletal proteins and cell organelles, many questions remain unanswered, partly because new methods are needed to study the complex interactions of cytoskeletal proteins and organelles that play a role in cell locomotion, host cell invasion, and cell division. The choice of fixation and preparation methods has proven critical for the analysis of cytoskeletal proteins because of the rapid turnover of actin filaments and the dense spatial organization of the cytoskeleton and its association with the complex membrane system. Here we introduce new methods to study structural aspects of cytoskeletal motility, host cell invasion, and cell division of Toxoplasma gondii, a most suitable laboratory model that is representative of apicomplexan parasites. The novel approach in our experiments is the use of high resolution low voltage field emission scanning electron microscopy (LVFESEM) combined with two new specimen preparation techniques. The first method uses LVFESEM after membrane extraction and stabilization of the cytoskeleton. This method allows viewing of actin filaments which had not been possible with any other method available so far. The second approach of imaging the parasite's ultrastructure and interactions with host cells uses semithick sections (200 nm) that are resin de-embedded (Ris and Malecki, 1993) and imaged with LVFESEM. This method allows analysis of structural detail in the parasite before and after host cell invasion and interactions with the membrane of the parasitophorous vacuole as well as parasite cell division.  相似文献   

9.
We introduce here an ATP (adenosine triphosphate)-fueled nano-biomachine constructed from actin and myosin gels. Various types of chemically cross-linked actin gel, which are tens of times larger in size than native actin filaments (F-actin), were formed by complexing with cation-polymers and placed on a chemically cross-linked myosin gel. By adding dilute solution of ATP, they moved along the myosin gel with a velocity as high as that of native F-actin by coupling to ATP hydrolysis. Formation mechanism and structure of actin complexes as well as those of myosin gels were studied in detail and elucidated with the specific characteristics of the motility. These results demonstrate that one can construct nano-biomachines fueled by chemical energy of ATP with controlled motility. The text was submitted by the authors in English.  相似文献   

10.
Association of protein molecules constitutes the basis for the interaction network in a cell. Despite its fundamental importance, the thermodynamic aspect of protein-protein binding, particularly the issues relating to the entropy change upon binding, remains elusive. The binding of actin and myosin, which are vital proteins in motility, is a typical example, in which two different binding mechanisms have been argued: the binding affinity increases with increasing temperature and with decreasing salt-concentration, indicating the entropy-driven binding and the enthalpy-driven binding, respectively. How can these thermodynamically different binding mechanisms coexist? To address this question, which is of general importance in understanding protein-protein bindings, we conducted an in silico titration of the actin-myosin system by molecular dynamics simulation using a residue-level coarse-grained model, with particular focus on the role of the electrostatic interaction. We found a good agreement between in silico and in vitro experiments on the salt-concentration dependence and the temperature dependence of the binding affinity. We then figured out how the two binding mechanisms can coexist: the enthalpy (due to electrostatic interaction between actin and myosin) provides the basal binding affinity, and the entropy (due to the orientational disorder of water molecules) enhances it at higher temperatures. In addition, we analyzed the actin-myosin complex structures observed during the simulation and obtained a variety of weak-binding complex structures, among which were found an unusual binding mode suggested by an earlier experiment and precursor structures of the strong-binding complex proposed by electron microscopy. These results collectively indicate the potential capability of a residue-level coarse-grained model to simulate the association-dissociation dynamics (particularly for transient weak-bindings) exhibited by larger and more complicated systems, as in a cell.  相似文献   

11.
We present an atomic lattice model for studying the polymerization of silicic acid in sol-gel and related processes for synthesizing silica materials. Our model is based on Si and O atoms occupying the sites of a body-centered-cubic lattice, with all atoms arranged in SiO(4) tetrahedra. This is the simplest model that allows for variation in the Si-O-Si angle, which is largely responsible for the versatility in silica polymorphs. The model describes the assembly of polymerized silica structures starting from a solution of silicic acid in water at a given concentration and pH. This model can simulate related materials-chalcogenides and clays-by assigning energy penalties to particular ring geometries in the polymerized structures. The simplicity of this approach makes it possible to study the polymerization process to higher degrees of polymerization and larger system sizes than has been possible with previous atomistic models. We have performed Monte Carlo simulations of the model at two concentrations: a low density state similar to that used in the clear solution synthesis of silicalite-1, and a high density state relevant to experiments on silica gel synthesis. For the high concentration system where there are NMR data on the temporal evolution of the Q(n) distribution, we find that the model gives good agreement with the experimental data. The model captures the basic mechanism of silica polymerization and provides quantitative structural predictions on ring-size distributions in good agreement with x-ray and neutron diffraction data.  相似文献   

12.
Methyl methacrylate has been polymerized in aqueous nitric acid at 30°C, with the redox system ceric ammonium nitrate–isopropyl alcohol as initiator. The gravimetric method has been used to follow the reaction. After a short induction period polymerization started, and conversion attained a maximum value with extent of reaction, whereas the ceric ion is exhausted. The size, distribution, and number of PMMA particles formed were measured by scanning electron microscope. From the electron micrographs it was found that the particles are formed over a short period, and that the particle size distribution seems to be determined by flocculation and coagulation of the particles, because these are not stabilized. Average-molecular weight was found to increase at high conversions and the molecular weight distribution became broader as particle size increased. Particle size increased with conversion, whereas the number of particles remained constant.  相似文献   

13.
We develop a coarse grained (CG) approach for efficiently simulating calcium dynamics in the endoplasmic reticulum membrane based on a fine stochastic lattice gas model. By grouping neighboring microscopic sites together into CG cells and deriving CG reaction rates using local mean field approximation, we perform CG kinetic Monte Carlo (kMC) simulations and find the results of CG-kMC simulations are in excellent agreement with that of the microscopic ones. Strikingly, there is an appropriate range of coarse proportion m, corresponding to the minimal deviation of the phase transition point compared to the microscopic one. For fixed m, the critical point increases monotonously as the system size increases, especially, there exists scaling law between the deviations of the phase transition point and the system size. Moreover, the CG approach provides significantly faster Monte Carlo simulations which are easy to implement and are directly related to the microscopics, so that one can study the system size effects at the cost of reasonable computational time.  相似文献   

14.
p21-activated kinase (PAK)-interacting exchange factor (PIX) is known to be involved in regulation of Cdc42/Rac GTPases and PAK activity. PIX binds to the proline-rich region of PAK, and regulates biological events through activation of Cdc42/Rac GTPase. To further investigate the role of PIX we produced monoclonal antibodies (Mab) against bPIX. Three clones; N-C6 against N-terminal half and C-A3 and C-B7 against C- terminal half of bPIX were generated and characterized. N-C6 Mab detected bPIX as a major band in most cell lines. C-A3 Mab recognizes GIT-binding domain (GBD), but it does not interfere with GIT binding to bPIX. Using C-A3 Mab possible bPIX interaction with actin in PC12 cells was examined. bPIX Mab (C-A3) specifically precipitated actin of the PC12 cell lysates whereas actin Mab failed to immunoprecipitate bPIX. Co-sedimentation of PC12 cell lysates with the polymerized F-actin resulted in the recovery of most of bPIX in the cell lysates. These results suggest that bPIX may not interact with soluble actin but with polymerized F-actin and revealed that bPIX constitutes a functional complex with actin. These data indicate real usefulness of the bPIX Mab in the study of bPIX role(s) in regulation of actin cyoskeleton.  相似文献   

15.
We have developed an ammonia-sensitive material by coupling the Berthelot reaction to our polymerized crystalline colloidal array (PCCA) technology. The material consists of a periodic array of highly charged colloidal particles (110 nm diameter) embedded in a poly(hydroxyethyl acrylate) hydrogel. The particles have a lattice spacing such that they Bragg-diffract visible light. In the Berthelot reaction, ammonia, hypochlorite, and phenol react to produce the dye molecule indophenol blue in an aqueous solution. We use this reaction in our sensor by covalently attaching 3-aminophenol to the hydrogel backbone, which forms cross-links through the Berthelot mechanism. Ammonia reacts with hypochlorite, forming monochloramine, which then reacts with a pendant aminophenol to form a benzoquinone chlorimine. The benzoquinone chlorimine reacts with another pendant aminophenol to form a cross-link. The creation of new cross-links causes the hydrogel to shrink, which reduces the lattice spacing of the embedded colloidal array. This volume change results in a blue-shift in the diffracted light proportional to the concentration of NH3 in the sample. We demonstrate that the NH3 photonic crystal sensing material is capable of quantitative determination of concentrations in the physiological range (50–350 μmol NH3 L−1) in human blood serum.  相似文献   

16.
The effect of light on calcium transport was studied. Bull sperm cells were irradiated with an He-Ne (630 mm) laser and a 780 nm diode laser at various energy doses, and 45Ca2+ uptake was measured by the filtration technique. It was found that there is an accelerated Ca2+ transport in the irradiated cells, which means that laser light can stimulate Ca2+ exchange through the cell membrane. This may cause transient changes in the cytoplasmic Ca2+ concentration which, in spermatozoa, has a regulatory role in control of motility and acrosome reaction, and in other cells can trigger mitosis.  相似文献   

17.
Herein, a novel cationic peptide gemini amphiphile containing diacetylene motifs ( DA2P ) is presented, which self‐assembles into novel tadpole‐ and bola‐shaped nanostructures at low concentrations and nanofibers at higher concentrations. Interestingly, the DA2P assemblies can be polymerized into a fluorescent red phase but only during incubation with HeLa cells, most likely owing to the reorganization of the diacetylene chains of DA2P upon interaction with the cell membrane. The red‐fluorescent polymerized DA2P assemblies can serve as a novel cell imaging probe. However, only vesicles, tadpole‐ and bola‐shaped DA2P assemblies can be translocated into HeLa cells, whereas the nanofiber‐like DA2P assemblies are trapped by the cell membranes and do not enter the cells. Hence, morphology‐dependent cell imaging is observed.  相似文献   

18.
Actin polymerization is an essential process in eukaryotic cells that provides a driving force for motility and mechanical resistance for cell shape. By using preformed gelsolin–actin nuclei and applying stopped‐flow methodology, we quantitatively studied the elongation kinetics of actin filaments as a function of temperature and pressure in the presence of synthetic and protein crowding agents. We show that the association of actin monomers to the pointed end of double‐stranded helical actin filaments (F‐actin) proceeds via a transition state that requires an activation energy of 56 kJ mol?1 for conformational and hydration rearrangements, but exhibits a negligible activation volume, pointing to a compact transition state that is devoid of packing defects. Macromolecular crowding causes acceleration of the F‐actin elongation rate and counteracts the deteriorating effect of pressure. The results shed new light on the combined effect of these parameters on the polymerization process of actin, and help us understand the temperature and pressure sensitivity of actin polymerization under extreme conditions.  相似文献   

19.
Monomeric actin (G-actin) polymerizes spontaneously into helical filaments in the presence of inorganic salts. The slowest, rate-limiting step of the polymerization process is formation of actin trimers, the smallest oligomers that serve as nuclei for fast filament growth (filament elongation) by monomer addition at the filament ends. In low ionic-strength solutions, actin can be polymerized by myosin subfragment-1 (S1). In early works it has been suggested that G-actin-S1 1:1 complexes (GS) assemble into filaments according to the nucleation-filament elongation scheme. Subsequent studies indicated that one S1 molecule can bind two actin monomers, and that oligomerization of the initial complexes is a fast reaction. This has led to suggest an alternative mechanism, with a ternary G(2)S complex and its oligomers being predominant intermediates of S1-induced assembly of G-actin into filaments. We used dynamic light scattering to analyze the initial steps of S1-induced polymerization of actin. Our results suggest formation of GS complexes and their oligomers in the presence of S1 equimolar to or in excess over actin. We confirm formation of G(2)S complexes as intermediates of S1-induced polymerization in the presence of actin in excess over S1.  相似文献   

20.
We investigate a two-tolerant polymer model on the square Husimi lattice, which aims at describing the properties of RNA-like macromolecules. We solve the model in a numerically exact way, working out the grand-canonical phase diagram, both with and without taking into account the stacking effect. Besides a nonpolymerized phase, we observe two different polymerized phases characterized by a lower or higher density of doubly visited lattice bonds. The system exhibits three qualitatively different regimes, as a function of the monomer chemical potential. Below some T1 temperature and above some T2 temperature, the transition to the nonpolymerized phase is continuous, whereas, in the (T1,T2) temperature range, the transition is first order. In the dilute-solution limit, the high temperature regime corresponds to a swollen ("coil") state, the intermediate regime to a moderately collapsed ("molten") state, with a small fraction of paired segments, and the low temperature regime to an almost fully paired ("native") state. The molten state ends in a tricritical (Theta-like) transition at high temperature and in a critical end point at low temperature. Upon increasing the stacking energy parameter, the temperature range of the molten state turns out to be progressively reduced but never completely removed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号