首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
(E)-3-(hetero)aryl-1-(2-((E)-(indolin-1-ylimino)methyl)phenyl)prop-2-en-1-ones 1 undergo 6-exo-trig cyclization reactions upon treatment with BF(3)·Me(2)S in dichloromethane at low temperature to give the tetralones 10 in good yield. This cyclization process can be considered to be an intramolecular Michael-type addition which is accompanied by an internal redox reaction as the indoline fragment is oxidized to indole with simultaneous hydrogen shift to nitrogen atom N1 and the α-carbon atom of the Michael system. The reactions at the iminic centers take place via umpolung of the classical carbonyl reactivity. The reaction is diastereoselective and affords exclusively 3,4-disubstituted α-tetralones 10 as trans-diastereomers. According to quantum chemical calculations the reactions take place under kinetic control with the trans-diastereomer being the kinetically favored product as it has the lower activation barrier compared to the cis-diastereomer.  相似文献   

2.
Reactions of atomic lanthanide cations (excluding Pm+) with D2O have been surveyed in the gas phase using an inductively coupled plasma/selected-ion flow tube (ICP/SIFT) tandem mass spectrometer to measure rate coefficients and product distributions in He at 0.35+/-0.01 Torr and 295+/-2 K. Primary reaction channels were observed corresponding to O-atom transfer, OD transfer and D2O addition. O-atom transfer is the predominant reaction channel and occurs exclusively with Ce+, Nd+, Sm+, Gd+, Tb+ and Lu+. OD transfer is observed exclusively with Yb+, and competes with O-atom transfer in the reactions with La+ and Pr+. Slow D2O addition is observed with early lanthanide cation Eu+ and the late lanthanide cations Dy+, Ho+, Er+ and Tm+. Higher-order sequential D2O addition of up to five D2O molecules is observed with LnO+ and LnOD+. A delay of more than 50 kcal mol(-1) is observed in the onset of efficient exothermic O-atom transfer, which suggests the presence of kinetic barriers of perhaps this magnitude in the exothermic O-atom transfer reactions of Dy+, Ho+, Er) and Tm+ with D2O. The reaction efficiency for O-atom transfer is seen to decrease as the energy required to promote an electron to make two non-f electrons available for bonding increases. The periodic trend in reaction efficiency along the lanthanide series matches the periodic trend in the electron-promotion energy required to achieve a d1s1 or d2 excited electronic configuration in the lanthanide cation, and also the periodic trends across the lanthanide row reported previously for several alcohols and phenol. An Arrhenius-like correlation is also observed for the dependence of D2O reactivity on promotion energy for early lanthanide cations, and exhibits a characteristic temperature of 2600 K.  相似文献   

3.
The reactions of lactide racemisation, hydrolysis, or alcoholysis in the presence of water or anhydrous alcohol have been investigated separately. A small amount of water leads to lactide racemisation, hydrolysis, or both. Water acts as a catalyst for the racemisation of lactide. The racemisation mechanism has been studied by substituting D2O instead of H2O and measuring the substituent by gas chromatography-mass spectrometry (GC-MS). The experimental results show that the hydrogen atom on a chiral carbon of lactide is substituted by a 2H atom of D2O. The reaction of lactide with water is in good agreement with the mechanism of addition-elimination. The addition of water to the carbonyl group produces an intermediate with a pair of hydroxyls connected to a carbon atom. If a hydroxyl hydrogen atom is transferred to the ester bond (CO-O), the hydrolysis of lactide generally occurs. Any of these hydroxyls could also be dehydrated with the close methine, thus producing an enolate, and the transfer of hydrogen from the enolic hydroxyl group results in lactide racemisation. The conversion of d- or l-lactide into meso-lactide is a reversible and endothermic reaction when catalyzed by water. When lactide reacts with alcohol, its alcoholysis occurs more readily than its racemisation.  相似文献   

4.
The mechanistic aspects of the photosensitized reactions of a series of benzaldehyde oximes (1a-o) were studied by steady-state (product studies) and laser flash photolysis methods. Nanosecond laser flash photolysis studies have shown that the reaction of the oxime with triplet chloranil (3CA) proceeds via an electron-transfer mechanism provided the free energy for electron transfer (DeltaG(ET)) is favorable; typically, the oxidation potential of the oxime should be below 2.0 V. Substituted benzaldehyde oximes with oxidation potentials greater than 2.0 V quench 3CA at rates that are independent of the substituent and the oxidation potential. The most likely mechanism under these conditions is a hydrogen atom transfer mechanism as this reaction should be dependent on the O-H bond strength only, which is virtually the same for all oximes. Product studies have shown that aldoximes react to give both the corresponding aldehyde and the nitrile. The important intermediate in the aldehyde pathway is the iminoxyl radical, which is formed via an electron transfer-proton transfer (ET-PT) sequence (for oximes with low oxidation potentials) or via a hydrogen atom transfer (HAT) pathway (for oximes with larger oxidation potentials). The nitriles are proposed to result from intermediate iminoyl radicals, which can be formed via direct hydrogen atom abstraction or via an electron-transfer-proton-transfer sequence. The experimental data seems to support the direct hydrogen atom abstraction as evidenced by the break in linearity in the plot of the quenching rates against the oxidation potential, which suggests a change in mechanism. The nitrile product is favored when electron-accepting substituents are present on the benzene ring of the benzaldehyde oximes or when the hydroxyl hydrogen atom is unavailable for abstraction. The latter is the case in pyridine-2-carboxaldoxime (2), where a strong intramolecular hydrogen bond is formed. Other molecules that form weaker intramolecular hydrogen bonds such as 2-furaldehyde oxime (3) and thiophene-2-carboxaldoxime (4) tend to yield increasing amounts of aldehyde.  相似文献   

5.
Model studies are presented that suggest the mechanism of the lanthanide(III) salt catalysed mono acylation of symmetrical diols proceeds via chelation of the diol and the anhydride to the lanthanide salt, followed by an 'intramolecular' acyl transfer.  相似文献   

6.
7.
用密度泛函理论在B3LYP/6-311G(d,p)水平上研究了甲醇和氨辅助的腺嘌呤水解脱氨机理,结果表明该反应首先是在水的亲核进攻下形成一个四面体结构中间体,然后该中间体通过构象变化得到两个不同构象,从而找到两条不同反应路径.在路径a中,辅助分子参与了过渡态的形成,起到转移氢原子的作用;而在路径b中,辅助分子仅作为介质,没有参与过渡态的形成.在氨辅助的情况下,腺嘌呤在亲核反应前发生了胺-亚胺异构化,而在甲醇辅助机理中则未发生该异构化.能量结果表明甲醇辅助腺嘌呤脱氨反应具有与水辅助类似的势垒,而氨辅助反应的势垒则比水辅助的高.  相似文献   

8.
Unimolecular fragmentation patterns of the molecular ions of selected lactams and sultams bearing alkoxymethyl group at the nitrogen atom were studied. The main common fragmentation reaction observed for all compounds studied in this work is the elimination of an aldehyde molecule. This reaction is considered to proceed via two different mechanisms. For lactams, hydrogen rearrangement within an alkoxymethyl group is observed, which leads to the appropriate N-methyl derivatives. For sultams, transfer of the methyl group to the nitrogen and oxygen atoms, proceeding through an ion-neutral complex, dominates. Another important fragmentation channel characteristic exclusively for lactams is the loss of an alkyl radical. This process takes place within the N-alkoxymethyl moiety, yielding the appropriate protonated ion of N-formyllactams. This process is accompanied by relatively high kinetic energy release.  相似文献   

9.
In an attempt to assess the potential role of the hydroxyl radical in the atmospheric degradation of sulfuric acid, the hydrogen transfer between H2SO4 and HO* in the gas phase has been investigated by means of DFT and quantum-mechanical electronic-structure calculations, as well as classical transition state theory computations. The first step of the H2SO4 + HO* reaction is the barrierless formation of a prereactive hydrogen-bonded complex (Cr1) lying 8.1 kcal mol(-1) below the sum of the (298 K) enthalpies of the reactants. After forming Cr1, a single hydrogen transfer from H2SO4 to HO* and a degenerate double hydrogen-exchange between H2SO4 and HO* may occur. The single hydrogen transfer, yielding HSO4* and H2O, can take place through three different transition structures, the two lowest energy ones (TS1 and TS2) corresponding to a proton-coupled electron-transfer mechanism, whereas the higher energy one (TS3) is associated with a hydrogen atom transfer mechanism. The double hydrogen-exchange, affording products identical to reactants, takes place through a transition structure (TS4) involving a double proton-transfer mechanism and is predicted to be the dominant pathway. A rate constant of 1.50 x 10(-14) cm(3) molecule(-1) s(-1) at 298 K is obtained for the overall reaction H2SO4 + HO*. The single hydrogen transfer through TS1, TS2, and TS3 contributes to the overall rate constant at 298 K with a 43.4%. It is concluded that the single hydrogen transfer from H2SO4 to HO* yielding HSO4* and H2O might well be a significant sink for gaseous sulfuric acid in the atmosphere.  相似文献   

10.
[reaction: see text] Novel stereoselective reactions of 4-substituted-1-trimethylsilyl-2,3-butadienes ((allenylmethyl)silanes) were developed. The axially chiral (allenylmethyl)silanes were prepared from (3-bromopenta-2,4-dienyl)trimethylsilane by a Pd-catalyzed asymmetric reaction with soft nucleophiles with up to 88% enantioselectivity. The (allenylmethyl)silanes reacted with acetals in the presence of a TiCl(4) promoter to give 1,3-diene derivatives via an S(E)' pathway. The 1,3-dienyl products have (E)-geometry exclusively and up to 88%( )()chirality transfer from the axially chiral allenes to the centrally chiral 1,3-dienes was observed in the S(E)' reaction.  相似文献   

11.
Angularly fused carbocyclic frameworks and their heteroatom‐substituted analogues exist in many natural products that display a broad and interesting range of biological activities. Preparation of polycyclic products by cycloaddition reactions have been the long‐standing hot topic in the synthetic community. Dehydro‐Diels–Alder (DDA) reactions are one class of dehydropericyclic reactions that are derived conceptually by systematic removal of hydrogen atom pairs. A base‐promoted tandem Michael addition and DDA reaction of α,α‐dicyanoolefins with electron‐deficient 1,3‐conjugated enynes was realized in which a DDA reaction takes place between the arylalkynes and electron‐deficient tetrasubstituted olefin. The control experiments support the stepwise anionic reaction pathway rather than the concerted reaction pathway.  相似文献   

12.
The design and synthesis of dinuclear-lanthanide complexes possessing triazole-based bridges, formed by using copper catalysed 1,3-cycloaddition reactions between heptadentate alkyne functionalised cyclen europium or terbium complexes and di-azides (CuAAC reactions), are described. While this click reaction worked well for the formation of the homo-Eu(III) and Tb(III) bis-tri-arm cyclen N,N-dimethyl acetamide complexes, 2Eu and 2Tb, and for the homo-Eu(III) chiral N-methylnaphthalene based complexes 3Eu (S,S,S) and 4Eu (R,R,R), the formation of the Eu(III) complex of the primary amide analogue of 2, namely 1Eu, was not successful, clearly demonstrating the effect that the nature of the pendant arms has on this reaction. Furthermore, the click reactions between the free alkyne cyclen bis-derivatives (5-8) and the di-azide were unsuccessful, most likely due to the high affinity of the cyclen macrocycles for Cu(II). The Eu(III) complexes of 2-4 and 2Tb all gave rise to sensitised metal ion centred emission upon excitation of the triazole or the naphthalene antennae in methanol solution, and their hydration states were determined, which showed that while the Eu(III) mono-nuclear complexes had q ~ 2, the click products all had q ~ 1. In the case of 3Eu (S,S,S) and 4Eu (R,R,R), the circular polarised emission (CPL) was also observed for both, demonstrating the chiral environment of the lanthanide centres.  相似文献   

13.
The study of the interactions of the three urea-based receptors AH, BH(+) and CH(2+) with a variety of anions, in MeCN, has made it possible to verify the current view that hydrogen bonding is frozen proton transfer from the donor (the urea N-H fragment in this case) to the acceptor (the anion X(-)). The poorly acidic, neutral receptor AH establishes two equivalent hydrogen bonds N-H···X(-), with all anions, including CH(3)COO(-) and F(-), in which moderate proton transfer from N-H to the anion takes place. The strongly acidic, dicationic receptor CH(2+) forms, with most anions, complexes in which two inequivalent hydrogen bonds are present: one involving moderate proton transfer (N-H···X(-)) and one in which advanced proton transfer has taken place, described as N(-)···H-X. The degree of proton advancement is directly related to the basic tendencies of the anion. The cationic receptor BH(+) of intermediate acidic properties only forms complexes with two inequivalent hydrogen bonds (moderate+advanced proton transfer) with CH(3)COO(-) and F(-), and complexes with two equivalent hydrogen bonds (moderate proton transfer) with all the other anions. Moreover, [B···HF] and [C···HF](+), on addition of a second F(-) ion, lose the bound HF molecule to give HF(2)(-). Release of CH(3)COOH, with the formation of [CH(3)COOH···CH(3)COO](-), also takes place with the [B···CH(3)COOH] complex in the presence of a large excess of anion.  相似文献   

14.
The base-assisted decomposition of (N-X),N-methylethanolamine (X = Cl, Br) takes place mainly through two concurrent processes: a fragmentation and an intramolecular elimination. The global process follows second order kinetics, first order relative to both (N-X),N-methylethanolamine and base. Interaction of the base with the ionizable hydroxylic hydrogen triggers the reaction. The intramolecular elimination pathway leads to formaldehyde and 2-aminoethanol as reaction products via base-assisted proton transfer from the methyl to the partially unprotonated hydroxylic oxygen, with loss of halide. Meanwhile, the fragmentation pathway leads to methylamine and two equivalents of formaldehyde via bimolecular base-promoted concerted breakage of the molecule into formaldehyde, halide ion and N-methylmethanimine. Kinetic evidences allow a crude estimation of the concertedness and characterization of the transition structure for both processes, which are slightly asynchronous, the proton transfer to the base taking place ahead of the rest of the molecular events. The degree of asynchroneity increases as the bases become weaker. Electronic structure calculations, at the B3LYP/6-31++G** level, on the fragmentation pathway support the proposed mechanism.  相似文献   

15.
Oxidation of cyclobutanol by aqueous Fe(IV) generates cyclobutanone in approximately 70% yield. In addition to this two-electron process, a smaller fraction of the reaction takes place by a one-electron process, believed to yield ring-opened products. A series of aliphatic alcohols, aldehydes, and ethers also react in parallel hydrogen atom and hydride transfer reactions, but acetone and acetonitrile react by hydrogen atom transfer only. Precise rate constants for each pathway for a number of substrates were obtained from a combination of detailed kinetics and product studies and kinetic simulations. Solvent kinetic isotope effect for the self-decay of Fe(IV), kH2O/kD2O = 2.8, is consistent with hydrogen atom abstraction from water.  相似文献   

16.
The aristolochene synthase catalysed cyclisation of farnesyl diphosphate (1) has been postulated to proceed through (S)-germacrene A (3). However, the active site acid that reprotonates this neutral intermediate has so far proved difficult to identify and, based on high level ab initio molecular orbital and density functional theory calculations, a proton transfer mechanism has recently been proposed, in which proton transfer from C12 of germacryl cation to the C6,C7-double bond of germacryl cation (2) proceeds either directly or via a tightly bound water molecule. In this work, the stereochemistry of the elimination and protonation reactions was investigated by the analysis of the reaction products from incubation of 1 and of [12,12,12,13,13,13-(2)H(6)]-farnesyl diphosphate (15) with aristolochene synthase from Penicillium roqueforti (PR-AS) in H(2)O and D(2)O. The results reveal proton loss from C12 during the reaction and incorporation of another proton from the solvent. Incubation of with PR-AS in D(2)O led to the production of (6R)-[6-(2)H] aristolochene, indicating that protonation occurs from the face of the 10-membered germacrene ring opposite the isopropylidene group. Hence these results firmly exclude proton transfer from C12 to C6 of germacryl cation. We propose here Lys 206 as the general acid/base during PR-AS catalysis. This residue is part of a conserved network of hydrogen bonds, along which protons could be delivered from the solvent to the active site.  相似文献   

17.
Quantum chemistry calculations have been used to study the uncatalyzed transfer hydrogenation between a range of hydrogen donors and acceptors, in the gas phase and in solution. Our study shows in the first place that in order to obtain reliable condensed-phase transition structures, it is necessary to perform geometry optimization in the presence of a continuum. In addition, the use of a free energy of solvation obtained with the UB3-LYP/6-31+G(d,p)/IEF-PCM/UA0 combination, in conjunction with UMPWB1K/6-311+G(3df,2p)//B3-LYP/6-31+G(d,p) gas-phase energies, gives the best agreement with experimental barriers. In condensed phases, the geometries and energies of the transition structures are found to relate to one another in a manner consistent with the Hammond postulate. There is also a correlation between the barriers and the energies of the radical intermediates in accord with the Bell-Evans-Polanyi principle. We find that in the gas phase, all the transfer-hydrogenation reactions examined proceed via a radical pathway. In condensed phases, some of the reactions follow a radical mechanism regardless of the solvent. However, for some reactions there is a change from a radical mechanism to an ionic mechanism as the solvent becomes more polar. Our calculations indicate that the detection of radical adducts by EPR does not necessarily indicate a predominant radical mechanism, because of the possibility of a concurrent ionic reaction. We also find that the transition structures for these reactions do not necessarily have a strong resemblance to the intermediates, and therefore one should be cautious in utilizing the influence of polar effects on the rate of reaction as a means of determining the mechanism.  相似文献   

18.
The dehydrogenation reaction of H2S by the 3∑- ground state of VS+: VS+ + H2S → VS2+ + H2 has been studied by using Density Functional Theory (DFT) at the B3LYP/DZVP level. It is found that the reaction proceeds along two possible pathways (A and B) yielding two isomer dehydrogenation products VS2+-1 (3B2) and VS2+-2 (3A1), respectively. For both pathways,the reaction has a two-step-reaction mechanism that involves the migration of two hydrogen atoms from S2 to V+, respectively. The migration of the second hydrogen via TS3 and that of the first via TS4 are the rate-determining steps for pathways A and B, respectively. The activation energy is 17.4 kcal/mol for pathway A and 22.8 kcal/mol for pathway B relative to the reactants. The calculated reaction heat of 9.9 kcal/mol indicates the endothermicity of pathway A and that of -11.9 kcal/mol suggests the exothermicity of pathway B.  相似文献   

19.
The gas phase reactions of anions with methyl and ethyl phenyl ether have been studied by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. 18O-Labelling has shown that part of the reactions of OH- with methyl phenyl ether proceed via ipso-substitution, the main reaction channel being SN2 substitution. Deuterium labelling has shown that extensive inter- and intramolecular hydrogen/deuterium exchange can precede the final substitution reaction. Hydrogen atoms originating from the methoxy substituent are involved in this exchange process. The reactions of anions with ethyl phenyl ether proceed mainly via an elimination mechanism. Deuterium labelling has shown that in some cases hydrogen/deuterium exchange takes place prior to elimination.  相似文献   

20.
The potential energy surfaces of the C-O cleavage, rotational isomerization, keto-enolic tautomerization, and dehydration reactions of acetylacetone in the lowest triplet and ground states have been determined using the complete active space self-consistent field and density functional theory methods. The main photochemical mechanism obtained indicates that the acetylacetone molecule in the S(2)((1)pipi*) state can relax to the T(1)((3)pipi*) state via the S(2)-S(1) vibronic interaction and an S(1)/T(1)/T(2) intersection. The C-O fission pathway is the predominant dissociation process in the T(1)((3)pipi) state. Rotational isomerization reactions proceed difficultly in the ground state but very easily in the T(1)((3)pipi*) state. Keto-enolic tautomerization takes place with little probability for acetylacetone in the gas phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号